neural-thinker's picture
feat: clean HuggingFace deployment with essential files only
824bf31
raw
history blame
17.9 kB
"""
Module: llm.services
Description: High-level LLM services for agent integration
Author: Anderson H. Silva
Date: 2025-01-24
License: Proprietary - All rights reserved
"""
import asyncio
from typing import Any, Dict, List, Optional, AsyncGenerator
from dataclasses import dataclass
from datetime import datetime
from pydantic import BaseModel, Field as PydanticField
from src.core import get_logger
from src.llm.providers import LLMManager, LLMRequest, LLMResponse, create_llm_manager
@dataclass
class LLMServiceConfig:
"""Configuration for LLM service."""
primary_provider: str = "groq"
enable_fallback: bool = True
enable_caching: bool = True
cache_ttl: int = 3600 # 1 hour
max_retries: int = 3
temperature: float = 0.7
max_tokens: int = 2048
class LLMChatMessage(BaseModel):
"""Chat message for LLM conversation."""
role: str = PydanticField(description="Message role: system, user, assistant")
content: str = PydanticField(description="Message content")
metadata: Optional[Dict[str, Any]] = PydanticField(default=None, description="Additional metadata")
class LLMConversation(BaseModel):
"""LLM conversation context."""
messages: List[LLMChatMessage] = PydanticField(default_factory=list, description="Conversation messages")
system_prompt: Optional[str] = PydanticField(default=None, description="System prompt")
conversation_id: Optional[str] = PydanticField(default=None, description="Unique conversation ID")
user_id: Optional[str] = PydanticField(default=None, description="User ID")
context: Optional[Dict[str, Any]] = PydanticField(default=None, description="Additional context")
class LLMService:
"""
High-level LLM service for agent integration.
Provides convenient methods for common LLM tasks:
- Text summarization
- Report generation
- Question answering
- Data analysis explanation
- Pattern interpretation
"""
def __init__(self, config: Optional[LLMServiceConfig] = None):
"""
Initialize LLM service.
Args:
config: Service configuration
"""
self.config = config or LLMServiceConfig()
self.logger = get_logger(__name__)
# Initialize LLM manager
self.llm_manager = create_llm_manager(
primary_provider=self.config.primary_provider,
enable_fallback=self.config.enable_fallback,
)
# Simple in-memory cache (in production, use Redis)
self._cache = {}
self.logger.info(
"llm_service_initialized",
primary_provider=self.config.primary_provider,
enable_fallback=self.config.enable_fallback,
enable_caching=self.config.enable_caching,
)
async def generate_text(
self,
prompt: str,
system_prompt: Optional[str] = None,
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
stream: bool = False,
) -> str:
"""
Generate text from a prompt.
Args:
prompt: Input prompt
system_prompt: Optional system prompt
temperature: Sampling temperature
max_tokens: Maximum tokens to generate
stream: Enable streaming
Returns:
Generated text
"""
request = LLMRequest(
messages=[{"role": "user", "content": prompt}],
system_prompt=system_prompt,
temperature=temperature or self.config.temperature,
max_tokens=max_tokens or self.config.max_tokens,
stream=stream,
)
if stream:
# Collect all chunks for non-streaming return
chunks = []
async for chunk in self.llm_manager.stream_complete(request):
chunks.append(chunk)
return "".join(chunks)
else:
response = await self.llm_manager.complete(request)
return response.content
async def chat(
self,
conversation: LLMConversation,
new_message: str,
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> str:
"""
Continue a conversation with a new message.
Args:
conversation: Existing conversation context
new_message: New user message
temperature: Sampling temperature
max_tokens: Maximum tokens to generate
Returns:
Assistant response
"""
# Add new user message
conversation.messages.append(
LLMChatMessage(role="user", content=new_message)
)
# Convert to LLM request format
messages = [
{"role": msg.role, "content": msg.content}
for msg in conversation.messages
]
request = LLMRequest(
messages=messages,
system_prompt=conversation.system_prompt,
temperature=temperature or self.config.temperature,
max_tokens=max_tokens or self.config.max_tokens,
)
response = await self.llm_manager.complete(request)
# Add assistant response to conversation
conversation.messages.append(
LLMChatMessage(role="assistant", content=response.content)
)
return response.content
async def summarize_data(
self,
data: Dict[str, Any],
context: str = "government transparency",
target_audience: str = "technical",
max_length: int = 500,
) -> str:
"""
Summarize structured data with context.
Args:
data: Data to summarize
context: Context for summarization
target_audience: Target audience (technical, executive, public)
max_length: Maximum summary length in words
Returns:
Data summary
"""
system_prompt = f"""
You are a data analyst specializing in {context}.
Your task is to create clear, concise summaries for {target_audience} audiences.
Focus on key insights, patterns, and actionable information.
Keep summaries under {max_length} words.
Use Portuguese language.
"""
# Format data for the prompt
data_str = self._format_data_for_prompt(data)
prompt = f"""
Analise os seguintes dados e forneça um resumo conciso:
{data_str}
Resumo (máximo {max_length} palavras):
"""
return await self.generate_text(
prompt=prompt,
system_prompt=system_prompt,
temperature=0.3, # Lower temperature for more focused summaries
max_tokens=max_length * 2, # Account for Portuguese word length
)
async def explain_anomaly(
self,
anomaly_data: Dict[str, Any],
context: str = "government contracts",
explain_to: str = "citizen",
) -> str:
"""
Generate human-readable explanation of an anomaly.
Args:
anomaly_data: Anomaly detection results
context: Context for explanation
explain_to: Target audience (citizen, auditor, manager)
Returns:
Anomaly explanation
"""
audience_prompts = {
"citizen": "Explique de forma simples para um cidadão comum, evitando jargão técnico.",
"auditor": "Forneça uma explicação técnica detalhada para um auditor governamental.",
"manager": "Explique de forma executiva, focando em impactos e ações necessárias.",
}
system_prompt = f"""
Você é um especialista em transparência pública e detecção de irregularidades.
{audience_prompts.get(explain_to, audience_prompts['citizen'])}
Use linguagem clara e objetiva em português.
Sempre inclua o contexto e as implicações da anomalia.
"""
anomaly_description = self._format_anomaly_for_prompt(anomaly_data)
prompt = f"""
Foi detectada uma anomalia em {context}:
{anomaly_description}
Explique esta anomalia de forma clara:
1. O que foi detectado?
2. Por que isso é considerado uma anomalia?
3. Qual o impacto potencial?
4. Que ações são recomendadas?
"""
return await self.generate_text(
prompt=prompt,
system_prompt=system_prompt,
temperature=0.5,
max_tokens=1000,
)
async def generate_insights(
self,
patterns: List[Dict[str, Any]],
correlations: List[Dict[str, Any]],
context: str = "government spending",
) -> List[str]:
"""
Generate insights from patterns and correlations.
Args:
patterns: Detected patterns
correlations: Found correlations
context: Analysis context
Returns:
List of insights
"""
system_prompt = f"""
Você é um analista sênior especializado em {context}.
Sua tarefa é gerar insights valiosos a partir de padrões e correlações detectados.
Foque em descobertas que possam levar a melhorias ou identificar problemas.
Use português e seja conciso mas informativo.
"""
patterns_str = self._format_patterns_for_prompt(patterns)
correlations_str = self._format_correlations_for_prompt(correlations)
prompt = f"""
Com base nos seguintes padrões e correlações detectados em {context}:
PADRÕES IDENTIFICADOS:
{patterns_str}
CORRELAÇÕES ENCONTRADAS:
{correlations_str}
Gere uma lista de 5-7 insights principais que podem ser extraídos desta análise.
Cada insight deve ser claro, específico e acionável.
"""
response = await self.generate_text(
prompt=prompt,
system_prompt=system_prompt,
temperature=0.6,
max_tokens=1500,
)
# Parse response into list of insights
insights = []
for line in response.split('\n'):
line = line.strip()
if line and any(line.startswith(prefix) for prefix in ['•', '-', '*', '1.', '2.', '3.', '4.', '5.', '6.', '7.']):
# Clean up formatting
insight = line.lstrip('•-* ').lstrip('1234567. ')
if insight:
insights.append(insight)
return insights
async def create_executive_summary(
self,
investigation_results: Dict[str, Any],
analysis_results: Optional[Dict[str, Any]] = None,
target_length: int = 300,
) -> str:
"""
Create executive summary from investigation and analysis results.
Args:
investigation_results: Investigation findings
analysis_results: Optional analysis results
target_length: Target summary length in words
Returns:
Executive summary
"""
system_prompt = f"""
Você é um consultor executivo especializado em transparência governamental.
Crie resumos executivos concisos e impactantes para tomadores de decisão.
Foque nos pontos mais críticos e ações requeridas.
Use linguagem executiva em português, máximo {target_length} palavras.
"""
inv_summary = self._format_investigation_for_prompt(investigation_results)
analysis_summary = ""
if analysis_results:
analysis_summary = f"\n\nRESULTADOS DA ANÁLISE:\n{self._format_analysis_for_prompt(analysis_results)}"
prompt = f"""
Com base nos seguintes resultados de investigação{' e análise' if analysis_results else ''}:
RESULTADOS DA INVESTIGAÇÃO:
{inv_summary}{analysis_summary}
Crie um resumo executivo focando em:
1. Principais descobertas
2. Nível de risco identificado
3. Impacto financeiro estimado
4. Ações prioritárias recomendadas
Resumo executivo ({target_length} palavras):
"""
return await self.generate_text(
prompt=prompt,
system_prompt=system_prompt,
temperature=0.4,
max_tokens=target_length * 2,
)
async def close(self):
"""Close LLM service and cleanup resources."""
await self.llm_manager.close()
self._cache.clear()
# Helper methods for formatting data
def _format_data_for_prompt(self, data: Dict[str, Any]) -> str:
"""Format structured data for LLM prompt."""
lines = []
for key, value in data.items():
if isinstance(value, dict):
lines.append(f"{key}:")
for sub_key, sub_value in value.items():
lines.append(f" {sub_key}: {sub_value}")
elif isinstance(value, list):
lines.append(f"{key}: {len(value)} items")
if value and len(value) <= 5:
for item in value:
lines.append(f" - {item}")
else:
lines.append(f"{key}: {value}")
return "\n".join(lines)
def _format_anomaly_for_prompt(self, anomaly: Dict[str, Any]) -> str:
"""Format anomaly data for LLM prompt."""
return f"""
Tipo: {anomaly.get('type', 'N/A')}
Descrição: {anomaly.get('description', 'N/A')}
Severidade: {anomaly.get('severity', 0):.2f}
Confiança: {anomaly.get('confidence', 0):.2f}
Explicação: {anomaly.get('explanation', 'N/A')}
Evidências: {anomaly.get('evidence', {})}
Impacto Financeiro: R$ {anomaly.get('financial_impact', 0):,.2f}
"""
def _format_patterns_for_prompt(self, patterns: List[Dict[str, Any]]) -> str:
"""Format patterns for LLM prompt."""
if not patterns:
return "Nenhum padrão detectado."
lines = []
for i, pattern in enumerate(patterns[:5], 1): # Limit to top 5
lines.append(f"{i}. {pattern.get('description', 'Padrão detectado')}")
lines.append(f" Significância: {pattern.get('significance', 0):.2f}")
if 'insights' in pattern:
for insight in pattern['insights'][:2]: # Top 2 insights
lines.append(f" - {insight}")
return "\n".join(lines)
def _format_correlations_for_prompt(self, correlations: List[Dict[str, Any]]) -> str:
"""Format correlations for LLM prompt."""
if not correlations:
return "Nenhuma correlação significativa encontrada."
lines = []
for i, corr in enumerate(correlations[:3], 1): # Limit to top 3
lines.append(f"{i}. {corr.get('description', 'Correlação detectada')}")
lines.append(f" Coeficiente: {corr.get('correlation_coefficient', 0):.3f}")
lines.append(f" Interpretação: {corr.get('business_interpretation', 'N/A')}")
return "\n".join(lines)
def _format_investigation_for_prompt(self, results: Dict[str, Any]) -> str:
"""Format investigation results for LLM prompt."""
summary = results.get('summary', {})
anomalies = results.get('anomalies', [])
lines = [
f"Registros analisados: {summary.get('total_records', 0)}",
f"Anomalias encontradas: {summary.get('anomalies_found', 0)}",
f"Score de risco: {summary.get('risk_score', 0):.1f}/10",
f"Valor suspeito: R$ {summary.get('suspicious_value', 0):,.2f}",
]
if anomalies:
lines.append("\nPrincipais anomalias:")
for anomaly in anomalies[:3]: # Top 3 anomalies
lines.append(f"- {anomaly.get('description', 'Anomalia detectada')}")
return "\n".join(lines)
def _format_analysis_for_prompt(self, results: Dict[str, Any]) -> str:
"""Format analysis results for LLM prompt."""
summary = results.get('summary', {})
patterns = results.get('patterns', [])
lines = [
f"Registros analisados: {summary.get('total_records', 0)}",
f"Padrões encontrados: {summary.get('patterns_found', 0)}",
f"Score de análise: {summary.get('analysis_score', 0):.1f}/10",
f"Organizações analisadas: {summary.get('organizations_analyzed', 0)}",
]
if patterns:
lines.append("\nPrincipais padrões:")
for pattern in patterns[:3]: # Top 3 patterns
lines.append(f"- {pattern.get('description', 'Padrão detectado')}")
return "\n".join(lines)
# Factory function for easy service creation
def create_llm_service(
primary_provider: str = "groq",
enable_fallback: bool = True,
**kwargs
) -> LLMService:
"""
Create LLM service with specified configuration.
Args:
primary_provider: Primary LLM provider
enable_fallback: Enable fallback providers
**kwargs: Additional configuration
Returns:
Configured LLM service
"""
config = LLMServiceConfig(
primary_provider=primary_provider,
enable_fallback=enable_fallback,
**kwargs
)
return LLMService(config)