neural-thinker's picture
feat: clean HuggingFace deployment with essential files only
824bf31
raw
history blame
18.1 kB
"""
Advanced caching system with Redis, memory cache, and intelligent cache strategies.
Provides multi-level caching, cache warming, and performance optimization.
"""
import json
import hashlib
import asyncio
import time
from typing import Any, Dict, List, Optional, Union, Callable
from datetime import datetime, timedelta
from functools import wraps
from dataclasses import dataclass, asdict
import redis.asyncio as redis
from redis.asyncio import Redis
import pickle
import zlib
from src.core.config import get_settings
from src.core import get_logger
logger = get_logger(__name__)
settings = get_settings()
@dataclass
class CacheConfig:
"""Cache configuration for different data types."""
ttl: int # Time to live in seconds
compress: bool = False
serialize_method: str = "json" # json, pickle
max_memory_items: int = 1000
cache_warming: bool = False
invalidation_tags: List[str] = None
# Cache configurations for different data types
CACHE_CONFIGS = {
"transparency_contracts": CacheConfig(
ttl=3600, # 1 hour
compress=True,
serialize_method="json",
max_memory_items=500,
cache_warming=True,
invalidation_tags=["transparency", "contracts"]
),
"transparency_expenses": CacheConfig(
ttl=3600, # 1 hour
compress=True,
serialize_method="json",
max_memory_items=500,
cache_warming=True,
invalidation_tags=["transparency", "expenses"]
),
"analysis_results": CacheConfig(
ttl=86400, # 24 hours
compress=True,
serialize_method="pickle",
max_memory_items=200,
invalidation_tags=["analysis"]
),
"agent_responses": CacheConfig(
ttl=7200, # 2 hours
compress=True,
serialize_method="pickle",
max_memory_items=300,
invalidation_tags=["agents"]
),
"user_sessions": CacheConfig(
ttl=3600, # 1 hour
serialize_method="json",
max_memory_items=1000,
invalidation_tags=["sessions"]
),
"api_responses": CacheConfig(
ttl=300, # 5 minutes
compress=False,
serialize_method="json",
max_memory_items=2000,
invalidation_tags=["api"]
),
"ml_embeddings": CacheConfig(
ttl=604800, # 1 week
compress=True,
serialize_method="pickle",
max_memory_items=100,
invalidation_tags=["ml", "embeddings"]
)
}
class MemoryCache:
"""High-performance in-memory cache with LRU eviction."""
def __init__(self, max_size: int = 1000):
self.max_size = max_size
self.cache = {}
self.access_times = {}
self.expiry_times = {}
def get(self, key: str) -> Optional[Any]:
"""Get item from memory cache."""
if key not in self.cache:
return None
# Check expiry
if key in self.expiry_times:
if datetime.utcnow() > self.expiry_times[key]:
self.delete(key)
return None
# Update access time
self.access_times[key] = time.time()
return self.cache[key]
def set(self, key: str, value: Any, ttl: Optional[int] = None):
"""Set item in memory cache."""
# Evict old items if necessary
if len(self.cache) >= self.max_size and key not in self.cache:
self._evict_lru()
self.cache[key] = value
self.access_times[key] = time.time()
if ttl:
self.expiry_times[key] = datetime.utcnow() + timedelta(seconds=ttl)
def delete(self, key: str):
"""Delete item from memory cache."""
self.cache.pop(key, None)
self.access_times.pop(key, None)
self.expiry_times.pop(key, None)
def clear(self):
"""Clear all items from memory cache."""
self.cache.clear()
self.access_times.clear()
self.expiry_times.clear()
def _evict_lru(self):
"""Evict least recently used item."""
if not self.access_times:
return
# Find LRU item
lru_key = min(self.access_times.keys(), key=lambda k: self.access_times[k])
self.delete(lru_key)
def get_stats(self) -> Dict[str, Any]:
"""Get cache statistics."""
return {
"size": len(self.cache),
"max_size": self.max_size,
"utilization": len(self.cache) / self.max_size if self.max_size > 0 else 0
}
class RedisCache:
"""Redis-based distributed cache."""
def __init__(self):
self.redis_client: Optional[Redis] = None
self._connection_pool = None
async def get_redis_client(self) -> Redis:
"""Get Redis client with connection pooling."""
if not self.redis_client:
self._connection_pool = redis.ConnectionPool.from_url(
settings.redis_url,
max_connections=20,
retry_on_timeout=True,
health_check_interval=30
)
self.redis_client = Redis(connection_pool=self._connection_pool)
return self.redis_client
async def get(self, key: str) -> Optional[Any]:
"""Get item from Redis cache."""
try:
client = await self.get_redis_client()
data = await client.get(key)
if data is None:
return None
# Try to deserialize
try:
# Check if compressed
if data.startswith(b'\x78\x9c'): # zlib magic number
data = zlib.decompress(data)
return pickle.loads(data)
except:
# Fallback to JSON
return json.loads(data.decode('utf-8'))
except Exception as e:
logger.error(f"Redis get error for key {key}: {e}")
return None
async def set(self, key: str, value: Any, ttl: int, compress: bool = False,
serialize_method: str = "json"):
"""Set item in Redis cache."""
try:
client = await self.get_redis_client()
# Serialize data
if serialize_method == "pickle":
data = pickle.dumps(value)
else:
data = json.dumps(value, default=str).encode('utf-8')
# Compress if requested
if compress and len(data) > 1024: # Only compress larger items
data = zlib.compress(data)
await client.setex(key, ttl, data)
except Exception as e:
logger.error(f"Redis set error for key {key}: {e}")
async def delete(self, key: str):
"""Delete item from Redis cache."""
try:
client = await self.get_redis_client()
await client.delete(key)
except Exception as e:
logger.error(f"Redis delete error for key {key}: {e}")
async def delete_pattern(self, pattern: str):
"""Delete multiple keys matching pattern."""
try:
client = await self.get_redis_client()
keys = await client.keys(pattern)
if keys:
await client.delete(*keys)
except Exception as e:
logger.error(f"Redis delete pattern error for {pattern}: {e}")
async def invalidate_tags(self, tags: List[str]):
"""Invalidate cache items by tags."""
for tag in tags:
await self.delete_pattern(f"*:{tag}:*")
async def get_stats(self) -> Dict[str, Any]:
"""Get Redis cache statistics."""
try:
client = await self.get_redis_client()
info = await client.info()
return {
"used_memory": info.get("used_memory", 0),
"used_memory_human": info.get("used_memory_human", "0"),
"connected_clients": info.get("connected_clients", 0),
"total_commands_processed": info.get("total_commands_processed", 0),
"keyspace_hits": info.get("keyspace_hits", 0),
"keyspace_misses": info.get("keyspace_misses", 0),
"hit_rate": info.get("keyspace_hits", 0) / max(
info.get("keyspace_hits", 0) + info.get("keyspace_misses", 0), 1
)
}
except Exception as e:
logger.error(f"Redis stats error: {e}")
return {}
class MultiLevelCache:
"""Multi-level cache combining memory and Redis."""
def __init__(self):
self.memory_cache = MemoryCache()
self.redis_cache = RedisCache()
self.cache_stats = {
"hits": 0,
"misses": 0,
"memory_hits": 0,
"redis_hits": 0
}
def _get_cache_key(self, namespace: str, key: str) -> str:
"""Generate cache key with namespace."""
return f"cidadao_ai:{namespace}:{key}"
async def get(self, namespace: str, key: str) -> Optional[Any]:
"""Get item from multi-level cache."""
cache_key = self._get_cache_key(namespace, key)
# Try memory cache first
value = self.memory_cache.get(cache_key)
if value is not None:
self.cache_stats["hits"] += 1
self.cache_stats["memory_hits"] += 1
return value
# Try Redis cache
value = await self.redis_cache.get(cache_key)
if value is not None:
# Store in memory cache for faster access
config = CACHE_CONFIGS.get(namespace, CacheConfig(ttl=300))
self.memory_cache.set(cache_key, value, min(config.ttl, 300)) # Max 5 min in memory
self.cache_stats["hits"] += 1
self.cache_stats["redis_hits"] += 1
return value
self.cache_stats["misses"] += 1
return None
async def set(self, namespace: str, key: str, value: Any):
"""Set item in multi-level cache."""
config = CACHE_CONFIGS.get(namespace, CacheConfig(ttl=300))
cache_key = self._get_cache_key(namespace, key)
# Store in Redis
await self.redis_cache.set(
cache_key, value, config.ttl,
config.compress, config.serialize_method
)
# Store in memory cache if configured
if config.max_memory_items > 0:
self.memory_cache.set(cache_key, value, min(config.ttl, 300))
async def delete(self, namespace: str, key: str):
"""Delete item from multi-level cache."""
cache_key = self._get_cache_key(namespace, key)
self.memory_cache.delete(cache_key)
await self.redis_cache.delete(cache_key)
async def invalidate_namespace(self, namespace: str):
"""Invalidate all items in namespace."""
pattern = f"cidadao_ai:{namespace}:*"
await self.redis_cache.delete_pattern(pattern)
# Clear memory cache items for this namespace
to_delete = [k for k in self.memory_cache.cache.keys() if k.startswith(f"cidadao_ai:{namespace}:")]
for key in to_delete:
self.memory_cache.delete(key)
async def invalidate_tags(self, tags: List[str]):
"""Invalidate cache items by tags."""
await self.redis_cache.invalidate_tags(tags)
def get_hit_rate(self) -> float:
"""Get cache hit rate."""
total = self.cache_stats["hits"] + self.cache_stats["misses"]
return self.cache_stats["hits"] / max(total, 1)
async def get_comprehensive_stats(self) -> Dict[str, Any]:
"""Get comprehensive cache statistics."""
redis_stats = await self.redis_cache.get_stats()
memory_stats = self.memory_cache.get_stats()
return {
"hit_rate": self.get_hit_rate(),
"total_hits": self.cache_stats["hits"],
"total_misses": self.cache_stats["misses"],
"memory_hits": self.cache_stats["memory_hits"],
"redis_hits": self.cache_stats["redis_hits"],
"memory_cache": memory_stats,
"redis_cache": redis_stats
}
# Global cache instance
cache = MultiLevelCache()
def cache_key_generator(*args, **kwargs) -> str:
"""Generate consistent cache key from arguments."""
key_data = {
"args": args,
"kwargs": sorted(kwargs.items())
}
key_string = json.dumps(key_data, sort_keys=True, default=str)
return hashlib.md5(key_string.encode()).hexdigest()
def cached(namespace: str, ttl: Optional[int] = None,
key_generator: Optional[Callable] = None):
"""Decorator for caching function results."""
def decorator(func):
@wraps(func)
async def async_wrapper(*args, **kwargs):
# Generate cache key
if key_generator:
cache_key = key_generator(*args, **kwargs)
else:
cache_key = cache_key_generator(func.__name__, *args, **kwargs)
# Try to get from cache
result = await cache.get(namespace, cache_key)
if result is not None:
return result
# Execute function and cache result
result = await func(*args, **kwargs)
await cache.set(namespace, cache_key, result)
return result
@wraps(func)
def sync_wrapper(*args, **kwargs):
# For sync functions, we need to handle async cache operations
cache_key = cache_key_generator(func.__name__, *args, **kwargs)
# This is a simplified version - in practice, you might want
# to use a thread pool or make the function async
result = func(*args, **kwargs)
# Cache result asynchronously
asyncio.create_task(cache.set(namespace, cache_key, result))
return result
return async_wrapper if asyncio.iscoroutinefunction(func) else sync_wrapper
return decorator
class CacheWarming:
"""Cache warming system for preloading frequently accessed data."""
def __init__(self, cache_instance: MultiLevelCache):
self.cache = cache_instance
self.warming_tasks = []
async def warm_transparency_data(self):
"""Warm cache with frequently accessed transparency data."""
try:
from src.services.transparency_service import TransparencyService
transparency_service = TransparencyService()
# Warm popular contract searches
popular_queries = [
{"orgao": "26000", "ano": 2024}, # Education Ministry
{"orgao": "36000", "ano": 2024}, # Health Ministry
{"valor_min": 1000000, "ano": 2024}, # High-value contracts
]
for query in popular_queries:
try:
contracts = await transparency_service.get_contracts(**query)
cache_key = cache_key_generator("contracts", **query)
await self.cache.set("transparency_contracts", cache_key, contracts)
except Exception as e:
logger.error(f"Cache warming error for contracts {query}: {e}")
# Warm popular expense searches
expense_queries = [
{"orgao": "20000", "ano": 2024}, # Presidency
{"funcao": "10", "ano": 2024}, # Health function
]
for query in expense_queries:
try:
expenses = await transparency_service.get_expenses(**query)
cache_key = cache_key_generator("expenses", **query)
await self.cache.set("transparency_expenses", cache_key, expenses)
except Exception as e:
logger.error(f"Cache warming error for expenses {query}: {e}")
logger.info("Cache warming completed for transparency data")
except Exception as e:
logger.error(f"Cache warming failed: {e}")
async def start_warming_schedule(self):
"""Start scheduled cache warming."""
async def warming_task():
while True:
try:
await self.warm_transparency_data()
await asyncio.sleep(3600) # Warm every hour
except Exception as e:
logger.error(f"Scheduled cache warming error: {e}")
await asyncio.sleep(300) # Retry in 5 minutes on error
task = asyncio.create_task(warming_task())
self.warming_tasks.append(task)
return task
def stop_warming(self):
"""Stop all warming tasks."""
for task in self.warming_tasks:
if not task.done():
task.cancel()
self.warming_tasks.clear()
# Global cache warming instance
cache_warmer = CacheWarming(cache)
async def get_redis_client() -> Redis:
"""Get Redis client - convenience function."""
return await cache.redis_cache.get_redis_client()
# Cache management functions
async def clear_all_cache():
"""Clear all cache data."""
cache.memory_cache.clear()
client = await get_redis_client()
await client.flushdb()
async def get_cache_stats() -> Dict[str, Any]:
"""Get comprehensive cache statistics."""
return await cache.get_comprehensive_stats()
# Preload cache configurations
def initialize_cache_system():
"""Initialize the cache system."""
logger.info("Initializing cache system...")
# Start cache warming if in production
if settings.environment == "production":
asyncio.create_task(cache_warmer.start_warming_schedule())
logger.info("Cache system initialized successfully")