cidadao.ai-backend / src /api /routes /observability.py
anderson-ufrj
feat: implement comprehensive monitoring and observability stack
c97e35f
"""
Observability monitoring endpoints.
This module provides endpoints for monitoring distributed tracing,
metrics, correlation IDs, and overall system observability.
"""
from typing import Dict, Any, Optional, List
from datetime import datetime, timedelta
from fastapi import APIRouter, HTTPException, Depends, Query, Response
from fastapi.responses import PlainTextResponse
from src.core import get_logger
from src.api.auth import get_current_user
from src.infrastructure.observability import (
metrics_manager,
tracing_manager,
request_tracker,
CorrelationContext
)
logger = get_logger(__name__)
router = APIRouter(prefix="/api/v1/observability", tags=["Observability"])
@router.get("/metrics", response_class=PlainTextResponse)
async def get_prometheus_metrics():
"""
Get Prometheus metrics in exposition format.
Returns metrics in Prometheus format for scraping by monitoring systems.
"""
try:
metrics_content = metrics_manager.generate_metrics()
return PlainTextResponse(
content=metrics_content,
media_type=metrics_manager.get_metrics_content_type()
)
except Exception as e:
logger.error(f"Failed to generate metrics: {e}")
raise HTTPException(status_code=500, detail="Failed to generate metrics")
@router.get("/metrics/json", response_model=Dict[str, Any])
async def get_metrics_json(
current_user = Depends(get_current_user)
):
"""
Get metrics in JSON format for API consumption.
Returns detailed metrics data in JSON format for dashboards and analysis.
"""
try:
# Get metrics registry stats
registry_stats = metrics_manager.get_registry_stats()
# Get request tracking stats
request_stats = request_tracker.get_stats()
active_requests = request_tracker.get_active_requests()
# Get correlation context
correlation_info = CorrelationContext.get_all_ids()
return {
"timestamp": datetime.utcnow().isoformat(),
"metrics_registry": registry_stats,
"request_tracking": {
"stats": request_stats,
"active_requests": active_requests,
"active_count": len(active_requests)
},
"correlation_context": correlation_info,
"system_info": {
"service_name": "cidadao-ai-backend",
"version": "1.0.0",
"environment": "production"
}
}
except Exception as e:
logger.error(f"Failed to get metrics JSON: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve metrics")
@router.get("/tracing/status", response_model=Dict[str, Any])
async def get_tracing_status(
current_user = Depends(get_current_user)
):
"""
Get distributed tracing status and configuration.
Returns information about the current tracing setup and health.
"""
try:
tracer = tracing_manager.get_tracer()
return {
"tracing_enabled": tracing_manager._initialized,
"service_name": tracing_manager.config.service_name,
"service_version": tracing_manager.config.service_version,
"configuration": {
"jaeger_endpoint": tracing_manager.config.jaeger_endpoint,
"otlp_endpoint": tracing_manager.config.otlp_endpoint,
"console_export": tracing_manager.config.enable_console_export,
"sample_rate": tracing_manager.config.sample_rate
},
"current_trace": {
"correlation_id": CorrelationContext.get_correlation_id(),
"span_id": CorrelationContext.get_span_id()
}
}
except Exception as e:
logger.error(f"Failed to get tracing status: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve tracing status")
@router.get("/correlation/current", response_model=Dict[str, Any])
async def get_current_correlation(
current_user = Depends(get_current_user)
):
"""
Get current correlation context information.
Returns all correlation IDs associated with the current request.
"""
try:
correlation_data = CorrelationContext.get_all_ids()
return {
"correlation_context": correlation_data,
"timestamp": datetime.utcnow().isoformat(),
"has_correlation_id": correlation_data.get("correlation_id") is not None,
"has_request_id": correlation_data.get("request_id") is not None,
"has_user_context": correlation_data.get("user_id") is not None
}
except Exception as e:
logger.error(f"Failed to get correlation context: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve correlation context")
@router.get("/requests/active", response_model=Dict[str, Any])
async def get_active_requests(
current_user = Depends(get_current_user)
):
"""
Get information about currently active requests.
Returns details about requests currently being processed.
"""
try:
active_requests = request_tracker.get_active_requests()
stats = request_tracker.get_stats()
# Calculate additional metrics
long_running_requests = [
req for req in active_requests
if req["duration_ms"] > 5000 # > 5 seconds
]
user_request_counts = {}
for req in active_requests:
user_id = req.get("user_id", "anonymous")
user_request_counts[user_id] = user_request_counts.get(user_id, 0) + 1
return {
"active_requests": active_requests,
"statistics": stats,
"analysis": {
"total_active": len(active_requests),
"long_running_count": len(long_running_requests),
"long_running_threshold_ms": 5000,
"user_distribution": user_request_counts,
"avg_active_duration_ms": (
sum(req["duration_ms"] for req in active_requests) / len(active_requests)
if active_requests else 0
)
},
"timestamp": datetime.utcnow().isoformat()
}
except Exception as e:
logger.error(f"Failed to get active requests: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve active requests")
@router.get("/performance/summary", response_model=Dict[str, Any])
async def get_performance_summary(
current_user = Depends(get_current_user),
time_window_minutes: int = Query(default=60, ge=1, le=1440)
):
"""
Get performance summary for the specified time window.
Args:
time_window_minutes: Time window in minutes (1-1440)
Returns:
Performance metrics and analysis for the time window
"""
try:
# Get request stats
request_stats = request_tracker.get_stats()
active_requests = request_tracker.get_active_requests()
# Calculate performance metrics
performance_summary = {
"time_window_minutes": time_window_minutes,
"timestamp": datetime.utcnow().isoformat(),
"request_metrics": {
"total_requests": request_stats["total_requests"],
"active_requests": request_stats["active_requests"],
"avg_duration_ms": request_stats["avg_duration_ms"],
"error_rate": request_stats["error_rate"],
"requests_per_minute": (
request_stats["total_requests"] / time_window_minutes
if time_window_minutes > 0 else 0
)
},
"performance_analysis": {
"healthy": request_stats["error_rate"] < 0.05 and request_stats["avg_duration_ms"] < 2000,
"error_rate_status": (
"healthy" if request_stats["error_rate"] < 0.01
else "warning" if request_stats["error_rate"] < 0.05
else "critical"
),
"latency_status": (
"healthy" if request_stats["avg_duration_ms"] < 1000
else "warning" if request_stats["avg_duration_ms"] < 2000
else "critical"
),
"active_requests_status": (
"healthy" if request_stats["active_requests"] < 10
else "warning" if request_stats["active_requests"] < 20
else "critical"
)
},
"recommendations": []
}
# Add recommendations based on metrics
if request_stats["error_rate"] > 0.05:
performance_summary["recommendations"].append(
"High error rate detected. Check logs for recurring errors and investigate root causes."
)
if request_stats["avg_duration_ms"] > 2000:
performance_summary["recommendations"].append(
"High average response time. Consider optimizing slow endpoints and database queries."
)
if request_stats["active_requests"] > 20:
performance_summary["recommendations"].append(
"High number of concurrent requests. Consider scaling or implementing rate limiting."
)
if len(active_requests) > 0:
long_running = [r for r in active_requests if r["duration_ms"] > 10000]
if long_running:
performance_summary["recommendations"].append(
f"{len(long_running)} requests running longer than 10 seconds. Investigate potential deadlocks or blocking operations."
)
if not performance_summary["recommendations"]:
performance_summary["recommendations"].append(
"System performance is within normal parameters."
)
return performance_summary
except Exception as e:
logger.error(f"Failed to get performance summary: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve performance summary")
@router.get("/health/detailed", response_model=Dict[str, Any])
async def get_detailed_health(
current_user = Depends(get_current_user)
):
"""
Get detailed health information including observability components.
Returns comprehensive health status of all observability systems.
"""
try:
# Check metrics system
metrics_healthy = True
metrics_error = None
try:
metrics_manager.get_registry_stats()
except Exception as e:
metrics_healthy = False
metrics_error = str(e)
# Check tracing system
tracing_healthy = tracing_manager._initialized
tracing_error = None if tracing_healthy else "Tracing not initialized"
# Check request tracking
tracking_healthy = True
tracking_error = None
try:
request_tracker.get_stats()
except Exception as e:
tracking_healthy = False
tracking_error = str(e)
# Overall health
overall_healthy = metrics_healthy and tracing_healthy and tracking_healthy
health_status = {
"timestamp": datetime.utcnow().isoformat(),
"overall_health": "healthy" if overall_healthy else "degraded",
"components": {
"metrics": {
"healthy": metrics_healthy,
"error": metrics_error,
"details": metrics_manager.get_registry_stats() if metrics_healthy else None
},
"tracing": {
"healthy": tracing_healthy,
"error": tracing_error,
"details": {
"initialized": tracing_manager._initialized,
"service_name": tracing_manager.config.service_name
}
},
"request_tracking": {
"healthy": tracking_healthy,
"error": tracking_error,
"details": request_tracker.get_stats() if tracking_healthy else None
},
"correlation": {
"healthy": True,
"details": CorrelationContext.get_all_ids()
}
},
"summary": {
"healthy_components": sum([
metrics_healthy,
tracing_healthy,
tracking_healthy
]),
"total_components": 3,
"health_score": sum([
metrics_healthy,
tracing_healthy,
tracking_healthy
]) / 3
}
}
return health_status
except Exception as e:
logger.error(f"Failed to get detailed health: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve health information")
@router.post("/tracing/sample-trace", response_model=Dict[str, Any])
async def create_sample_trace(
operation_name: str = Query(default="test_operation"),
duration_ms: int = Query(default=100, ge=1, le=10000),
current_user = Depends(get_current_user)
):
"""
Create a sample trace for testing tracing infrastructure.
Args:
operation_name: Name of the test operation
duration_ms: Simulated operation duration
Returns:
Trace information and status
"""
try:
import asyncio
from src.infrastructure.observability import trace_operation, TraceContext
async with trace_operation(
f"test.{operation_name}",
attributes={
"test.user_id": current_user["sub"],
"test.duration_ms": duration_ms,
"test.timestamp": datetime.utcnow().isoformat()
}
) as span:
# Set user context
TraceContext.set_user_context(current_user["sub"])
# Add events
TraceContext.add_event("test.started", {
"operation": operation_name
})
# Simulate work
await asyncio.sleep(duration_ms / 1000.0)
TraceContext.add_event("test.completed", {
"success": True
})
# Get trace information
correlation_id = CorrelationContext.get_correlation_id()
span_id = CorrelationContext.get_span_id()
return {
"trace_created": True,
"operation_name": operation_name,
"simulated_duration_ms": duration_ms,
"correlation_id": correlation_id,
"span_id": span_id,
"trace_context": CorrelationContext.get_all_ids(),
"timestamp": datetime.utcnow().isoformat()
}
except Exception as e:
logger.error(f"Failed to create sample trace: {e}")
raise HTTPException(status_code=500, detail="Failed to create sample trace")
@router.get("/debug/context", response_model=Dict[str, Any])
async def get_debug_context():
"""
Get debug information about current execution context.
Returns detailed information about the current request context
for debugging observability issues.
"""
try:
import threading
import os
return {
"timestamp": datetime.utcnow().isoformat(),
"correlation_context": CorrelationContext.get_all_ids(),
"thread_info": {
"thread_id": threading.get_ident(),
"thread_name": threading.current_thread().name,
"active_thread_count": threading.active_count()
},
"process_info": {
"process_id": os.getpid(),
"process_name": "cidadao-ai-backend"
},
"observability_status": {
"metrics_initialized": hasattr(metrics_manager, '_metrics'),
"tracing_initialized": tracing_manager._initialized,
"request_tracker_active": len(request_tracker.active_requests) > 0
}
}
except Exception as e:
logger.error(f"Failed to get debug context: {e}")
raise HTTPException(status_code=500, detail="Failed to retrieve debug context")