anderson-ufrj
commited on
Commit
·
0c769eb
1
Parent(s):
d4c25be
feat(chat): create Zumbi integration module for chat flow
Browse files- Implement clean interface to avoid circular imports
- Add lazy loading for Zumbi agent instance
- Create run_zumbi_investigation function with dados.gov.br support
- Format investigation results for chat responses
- Include open data references in response messages
src/api/routes/chat_zumbi_integration.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Integration module for Zumbi agent in chat flow.
|
| 3 |
+
|
| 4 |
+
This module provides a clean interface to use Zumbi agent from chat
|
| 5 |
+
without causing circular imports.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import logging
|
| 9 |
+
from typing import Dict, Any, Optional
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
|
| 12 |
+
from src.agents.zumbi import InvestigatorAgent, InvestigationRequest
|
| 13 |
+
from src.agents.deodoro import AgentContext, AgentStatus
|
| 14 |
+
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
# Cache for agent instance
|
| 18 |
+
_zumbi_agent_instance: Optional[InvestigatorAgent] = None
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
async def get_zumbi_agent() -> InvestigatorAgent:
|
| 22 |
+
"""
|
| 23 |
+
Get or create Zumbi agent instance with lazy loading.
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
InvestigatorAgent instance
|
| 27 |
+
"""
|
| 28 |
+
global _zumbi_agent_instance
|
| 29 |
+
|
| 30 |
+
if _zumbi_agent_instance is None:
|
| 31 |
+
logger.info("Creating new Zumbi agent instance")
|
| 32 |
+
_zumbi_agent_instance = InvestigatorAgent()
|
| 33 |
+
await _zumbi_agent_instance.initialize()
|
| 34 |
+
|
| 35 |
+
return _zumbi_agent_instance
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
async def run_zumbi_investigation(
|
| 39 |
+
query: str,
|
| 40 |
+
organization_codes: Optional[list] = None,
|
| 41 |
+
enable_open_data: bool = True,
|
| 42 |
+
session_id: Optional[str] = None,
|
| 43 |
+
user_id: Optional[str] = None,
|
| 44 |
+
) -> Dict[str, Any]:
|
| 45 |
+
"""
|
| 46 |
+
Run investigation using Zumbi agent.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
query: Investigation query
|
| 50 |
+
organization_codes: Optional organization codes
|
| 51 |
+
enable_open_data: Enable dados.gov.br integration
|
| 52 |
+
session_id: Session ID
|
| 53 |
+
user_id: User ID
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
Investigation results
|
| 57 |
+
"""
|
| 58 |
+
try:
|
| 59 |
+
# Get agent instance
|
| 60 |
+
agent = await get_zumbi_agent()
|
| 61 |
+
|
| 62 |
+
# Create investigation request
|
| 63 |
+
investigation_request = InvestigationRequest(
|
| 64 |
+
query=query,
|
| 65 |
+
organization_codes=organization_codes,
|
| 66 |
+
max_records=50,
|
| 67 |
+
enable_open_data_enrichment=enable_open_data,
|
| 68 |
+
anomaly_types=["price_anomaly", "vendor_concentration", "temporal_patterns"]
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Create context
|
| 72 |
+
context = AgentContext(
|
| 73 |
+
investigation_id=f"chat_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
| 74 |
+
user_id=user_id or "anonymous",
|
| 75 |
+
correlation_id=session_id or "default"
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Create message
|
| 79 |
+
message = {
|
| 80 |
+
"action": "investigate",
|
| 81 |
+
"payload": investigation_request.model_dump()
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
logger.info(f"Starting Zumbi investigation: {query}")
|
| 85 |
+
|
| 86 |
+
# Process investigation
|
| 87 |
+
response = await agent.process(message, context)
|
| 88 |
+
|
| 89 |
+
# Format response
|
| 90 |
+
if response.status == AgentStatus.COMPLETED:
|
| 91 |
+
result = response.result
|
| 92 |
+
|
| 93 |
+
# Extract key information
|
| 94 |
+
investigation_data = {
|
| 95 |
+
"status": "completed",
|
| 96 |
+
"anomalies_found": result.get("metadata", {}).get("anomalies_detected", 0),
|
| 97 |
+
"records_analyzed": result.get("metadata", {}).get("records_analyzed", 0),
|
| 98 |
+
"anomalies": result.get("anomalies", []),
|
| 99 |
+
"summary": result.get("summary", {}),
|
| 100 |
+
"open_data_available": False,
|
| 101 |
+
"related_datasets": []
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
# Check for open data enrichment
|
| 105 |
+
if enable_open_data:
|
| 106 |
+
# Count datasets found
|
| 107 |
+
datasets_found = set()
|
| 108 |
+
for anomaly in investigation_data["anomalies"]:
|
| 109 |
+
evidence = anomaly.get("evidence", {})
|
| 110 |
+
if evidence.get("_open_data_available"):
|
| 111 |
+
investigation_data["open_data_available"] = True
|
| 112 |
+
for dataset in evidence.get("_related_datasets", []):
|
| 113 |
+
datasets_found.add(dataset.get("title", "Unknown"))
|
| 114 |
+
|
| 115 |
+
investigation_data["related_datasets"] = list(datasets_found)
|
| 116 |
+
|
| 117 |
+
return investigation_data
|
| 118 |
+
|
| 119 |
+
else:
|
| 120 |
+
logger.error(f"Zumbi investigation failed: {response.error}")
|
| 121 |
+
return {
|
| 122 |
+
"status": "error",
|
| 123 |
+
"error": response.error or "Investigation failed",
|
| 124 |
+
"anomalies_found": 0,
|
| 125 |
+
"records_analyzed": 0
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
except Exception as e:
|
| 129 |
+
logger.error(f"Error in Zumbi investigation: {e}")
|
| 130 |
+
return {
|
| 131 |
+
"status": "error",
|
| 132 |
+
"error": str(e),
|
| 133 |
+
"anomalies_found": 0,
|
| 134 |
+
"records_analyzed": 0
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def format_investigation_message(investigation_data: Dict[str, Any]) -> str:
|
| 139 |
+
"""
|
| 140 |
+
Format investigation results for chat response.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
investigation_data: Investigation results
|
| 144 |
+
|
| 145 |
+
Returns:
|
| 146 |
+
Formatted message
|
| 147 |
+
"""
|
| 148 |
+
if investigation_data["status"] == "error":
|
| 149 |
+
return f"❌ Erro na investigação: {investigation_data.get('error', 'Erro desconhecido')}"
|
| 150 |
+
|
| 151 |
+
message = "🏹 **Investigação Concluída**\n\n"
|
| 152 |
+
message += f"📊 **Resumo da Análise:**\n"
|
| 153 |
+
message += f"• Registros analisados: {investigation_data['records_analyzed']}\n"
|
| 154 |
+
message += f"• Anomalias detectadas: {investigation_data['anomalies_found']}\n"
|
| 155 |
+
|
| 156 |
+
# Add open data information if available
|
| 157 |
+
if investigation_data.get("open_data_available"):
|
| 158 |
+
datasets_count = len(investigation_data.get("related_datasets", []))
|
| 159 |
+
message += f"• 📂 Datasets abertos encontrados: {datasets_count}\n"
|
| 160 |
+
|
| 161 |
+
message += "\n"
|
| 162 |
+
|
| 163 |
+
# Show anomalies
|
| 164 |
+
if investigation_data["anomalies_found"] > 0:
|
| 165 |
+
message += "⚠️ **Anomalias Detectadas:**\n"
|
| 166 |
+
|
| 167 |
+
for i, anomaly in enumerate(investigation_data["anomalies"][:5], 1):
|
| 168 |
+
severity = anomaly.get("severity", 0)
|
| 169 |
+
severity_emoji = "🔴" if severity > 0.7 else "🟡" if severity > 0.4 else "🟢"
|
| 170 |
+
|
| 171 |
+
message += f"\n{severity_emoji} **{i}. {anomaly.get('anomaly_type', 'Unknown').replace('_', ' ').title()}**\n"
|
| 172 |
+
message += f" • Severidade: {severity:.2f}\n"
|
| 173 |
+
message += f" • {anomaly.get('description', 'Sem descrição')}\n"
|
| 174 |
+
|
| 175 |
+
# Add open data reference if available
|
| 176 |
+
evidence = anomaly.get("evidence", {})
|
| 177 |
+
if evidence.get("_related_datasets"):
|
| 178 |
+
message += f" • 📂 Dados abertos relacionados disponíveis\n"
|
| 179 |
+
|
| 180 |
+
else:
|
| 181 |
+
message += "✅ Nenhuma anomalia significativa foi detectada nos dados analisados.\n"
|
| 182 |
+
|
| 183 |
+
# Add summary statistics if available
|
| 184 |
+
summary = investigation_data.get("summary", {})
|
| 185 |
+
if summary:
|
| 186 |
+
message += f"\n📈 **Estatísticas:**\n"
|
| 187 |
+
if "total_value" in summary:
|
| 188 |
+
message += f"• Valor total analisado: R$ {summary['total_value']:,.2f}\n"
|
| 189 |
+
if "organizations_count" in summary:
|
| 190 |
+
message += f"• Organizações: {summary['organizations_count']}\n"
|
| 191 |
+
if "suppliers_count" in summary:
|
| 192 |
+
message += f"• Fornecedores: {summary['suppliers_count']}\n"
|
| 193 |
+
|
| 194 |
+
# Add note about open data if found
|
| 195 |
+
if investigation_data.get("open_data_available"):
|
| 196 |
+
message += f"\n💡 **Dados Abertos Disponíveis:**\n"
|
| 197 |
+
message += f"Encontramos {len(investigation_data['related_datasets'])} conjuntos de dados relacionados no dados.gov.br "
|
| 198 |
+
message += f"que podem fornecer informações adicionais para sua análise.\n"
|
| 199 |
+
|
| 200 |
+
# List first 3 datasets
|
| 201 |
+
for dataset in investigation_data["related_datasets"][:3]:
|
| 202 |
+
message += f"• {dataset}\n"
|
| 203 |
+
|
| 204 |
+
return message
|