anderson-ufrj
commited on
Commit
·
43cf505
1
Parent(s):
68d8151
test(memory): implement memory system tests
Browse files- Test episodic memory storage and retrieval
- Test semantic memory and knowledge graphs
- Test conversational memory management
- Test memory consolidation process
- Test cross-referencing between memory types
- Add importance calculation tests
- tests/unit/test_memory_system.py +595 -0
tests/unit/test_memory_system.py
ADDED
|
@@ -0,0 +1,595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unit tests for memory system components."""
|
| 2 |
+
import pytest
|
| 3 |
+
import asyncio
|
| 4 |
+
from datetime import datetime, timedelta
|
| 5 |
+
from unittest.mock import MagicMock, patch, AsyncMock
|
| 6 |
+
import numpy as np
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
from src.memory.episodic import (
|
| 10 |
+
EpisodicMemory,
|
| 11 |
+
Episode,
|
| 12 |
+
EpisodeType,
|
| 13 |
+
MemoryConsolidation
|
| 14 |
+
)
|
| 15 |
+
from src.memory.semantic import (
|
| 16 |
+
SemanticMemory,
|
| 17 |
+
Concept,
|
| 18 |
+
ConceptRelation,
|
| 19 |
+
KnowledgeGraph
|
| 20 |
+
)
|
| 21 |
+
from src.memory.conversational import (
|
| 22 |
+
ConversationalMemory,
|
| 23 |
+
DialogTurn,
|
| 24 |
+
ConversationContext,
|
| 25 |
+
IntentMemory
|
| 26 |
+
)
|
| 27 |
+
from src.memory.base import MemoryStore, MemoryEntry, ImportanceCalculator
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class TestMemoryEntry:
|
| 31 |
+
"""Test base memory entry."""
|
| 32 |
+
|
| 33 |
+
def test_memory_entry_creation(self):
|
| 34 |
+
"""Test creating memory entry."""
|
| 35 |
+
entry = MemoryEntry(
|
| 36 |
+
id="mem_123",
|
| 37 |
+
content={"data": "test memory"},
|
| 38 |
+
timestamp=datetime.now(),
|
| 39 |
+
importance=0.8,
|
| 40 |
+
access_count=0
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
assert entry.id == "mem_123"
|
| 44 |
+
assert entry.content["data"] == "test memory"
|
| 45 |
+
assert entry.importance == 0.8
|
| 46 |
+
assert entry.access_count == 0
|
| 47 |
+
|
| 48 |
+
def test_memory_entry_decay(self):
|
| 49 |
+
"""Test memory importance decay over time."""
|
| 50 |
+
# Create old memory
|
| 51 |
+
old_timestamp = datetime.now() - timedelta(days=7)
|
| 52 |
+
entry = MemoryEntry(
|
| 53 |
+
id="old_mem",
|
| 54 |
+
content="old data",
|
| 55 |
+
timestamp=old_timestamp,
|
| 56 |
+
importance=1.0
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Calculate decayed importance
|
| 60 |
+
decayed = entry.get_decayed_importance(decay_rate=0.1)
|
| 61 |
+
|
| 62 |
+
# Should be less than original
|
| 63 |
+
assert decayed < 1.0
|
| 64 |
+
assert decayed > 0.0
|
| 65 |
+
|
| 66 |
+
def test_memory_entry_access_tracking(self):
|
| 67 |
+
"""Test memory access tracking."""
|
| 68 |
+
entry = MemoryEntry(
|
| 69 |
+
id="tracked_mem",
|
| 70 |
+
content="data",
|
| 71 |
+
importance=0.5
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Track accesses
|
| 75 |
+
entry.record_access()
|
| 76 |
+
entry.record_access()
|
| 77 |
+
entry.record_access()
|
| 78 |
+
|
| 79 |
+
assert entry.access_count == 3
|
| 80 |
+
assert entry.last_accessed is not None
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class TestImportanceCalculator:
|
| 84 |
+
"""Test importance calculation strategies."""
|
| 85 |
+
|
| 86 |
+
def test_recency_importance(self):
|
| 87 |
+
"""Test recency-based importance."""
|
| 88 |
+
calculator = ImportanceCalculator(strategy="recency")
|
| 89 |
+
|
| 90 |
+
# Recent memory should have high importance
|
| 91 |
+
recent = datetime.now() - timedelta(minutes=10)
|
| 92 |
+
importance = calculator.calculate(
|
| 93 |
+
content="recent data",
|
| 94 |
+
metadata={"timestamp": recent}
|
| 95 |
+
)
|
| 96 |
+
assert importance > 0.8
|
| 97 |
+
|
| 98 |
+
# Old memory should have lower importance
|
| 99 |
+
old = datetime.now() - timedelta(days=30)
|
| 100 |
+
importance = calculator.calculate(
|
| 101 |
+
content="old data",
|
| 102 |
+
metadata={"timestamp": old}
|
| 103 |
+
)
|
| 104 |
+
assert importance < 0.3
|
| 105 |
+
|
| 106 |
+
def test_frequency_importance(self):
|
| 107 |
+
"""Test frequency-based importance."""
|
| 108 |
+
calculator = ImportanceCalculator(strategy="frequency")
|
| 109 |
+
|
| 110 |
+
# High access count = high importance
|
| 111 |
+
importance = calculator.calculate(
|
| 112 |
+
content="popular data",
|
| 113 |
+
metadata={"access_count": 100}
|
| 114 |
+
)
|
| 115 |
+
assert importance > 0.7
|
| 116 |
+
|
| 117 |
+
# Low access count = low importance
|
| 118 |
+
importance = calculator.calculate(
|
| 119 |
+
content="unpopular data",
|
| 120 |
+
metadata={"access_count": 1}
|
| 121 |
+
)
|
| 122 |
+
assert importance < 0.3
|
| 123 |
+
|
| 124 |
+
def test_combined_importance(self):
|
| 125 |
+
"""Test combined importance calculation."""
|
| 126 |
+
calculator = ImportanceCalculator(strategy="combined")
|
| 127 |
+
|
| 128 |
+
# Recent and frequently accessed
|
| 129 |
+
importance = calculator.calculate(
|
| 130 |
+
content="important data",
|
| 131 |
+
metadata={
|
| 132 |
+
"timestamp": datetime.now() - timedelta(hours=1),
|
| 133 |
+
"access_count": 50,
|
| 134 |
+
"user_rating": 0.9
|
| 135 |
+
}
|
| 136 |
+
)
|
| 137 |
+
assert importance > 0.8
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class TestEpisodicMemory:
|
| 141 |
+
"""Test episodic memory system."""
|
| 142 |
+
|
| 143 |
+
@pytest.fixture
|
| 144 |
+
def episodic_memory(self):
|
| 145 |
+
"""Create episodic memory instance."""
|
| 146 |
+
return EpisodicMemory(max_episodes=100)
|
| 147 |
+
|
| 148 |
+
@pytest.mark.asyncio
|
| 149 |
+
async def test_store_episode(self, episodic_memory):
|
| 150 |
+
"""Test storing investigation episode."""
|
| 151 |
+
episode = Episode(
|
| 152 |
+
id="ep_123",
|
| 153 |
+
type=EpisodeType.INVESTIGATION,
|
| 154 |
+
content={
|
| 155 |
+
"investigation_id": "inv_456",
|
| 156 |
+
"anomalies_found": 5,
|
| 157 |
+
"confidence": 0.85
|
| 158 |
+
},
|
| 159 |
+
participants=["zumbi", "anita"],
|
| 160 |
+
outcome="success"
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
await episodic_memory.store_episode(episode)
|
| 164 |
+
|
| 165 |
+
# Retrieve episode
|
| 166 |
+
retrieved = await episodic_memory.get_episode("ep_123")
|
| 167 |
+
assert retrieved is not None
|
| 168 |
+
assert retrieved.content["anomalies_found"] == 5
|
| 169 |
+
assert "zumbi" in retrieved.participants
|
| 170 |
+
|
| 171 |
+
@pytest.mark.asyncio
|
| 172 |
+
async def test_retrieve_similar_episodes(self, episodic_memory):
|
| 173 |
+
"""Test retrieving similar episodes."""
|
| 174 |
+
# Store multiple episodes
|
| 175 |
+
episodes = [
|
| 176 |
+
Episode(
|
| 177 |
+
id=f"ep_{i}",
|
| 178 |
+
type=EpisodeType.INVESTIGATION,
|
| 179 |
+
content={
|
| 180 |
+
"target_entity": "Ministry of Health",
|
| 181 |
+
"anomaly_type": "price" if i % 2 == 0 else "vendor",
|
| 182 |
+
"severity": 0.7 + (i * 0.05)
|
| 183 |
+
}
|
| 184 |
+
)
|
| 185 |
+
for i in range(5)
|
| 186 |
+
]
|
| 187 |
+
|
| 188 |
+
for episode in episodes:
|
| 189 |
+
await episodic_memory.store_episode(episode)
|
| 190 |
+
|
| 191 |
+
# Query similar episodes
|
| 192 |
+
query = {
|
| 193 |
+
"target_entity": "Ministry of Health",
|
| 194 |
+
"anomaly_type": "price"
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
similar = await episodic_memory.retrieve_similar(query, top_k=3)
|
| 198 |
+
|
| 199 |
+
assert len(similar) <= 3
|
| 200 |
+
# Should prioritize episodes with price anomalies
|
| 201 |
+
assert all(ep.content.get("anomaly_type") == "price"
|
| 202 |
+
for ep in similar[:2] if "anomaly_type" in ep.content)
|
| 203 |
+
|
| 204 |
+
@pytest.mark.asyncio
|
| 205 |
+
async def test_episode_consolidation(self, episodic_memory):
|
| 206 |
+
"""Test episode consolidation process."""
|
| 207 |
+
# Create related episodes
|
| 208 |
+
episodes = []
|
| 209 |
+
base_time = datetime.now() - timedelta(days=7)
|
| 210 |
+
|
| 211 |
+
for i in range(10):
|
| 212 |
+
episode = Episode(
|
| 213 |
+
id=f"consolidate_{i}",
|
| 214 |
+
type=EpisodeType.INVESTIGATION,
|
| 215 |
+
content={
|
| 216 |
+
"entity": "Entity_A",
|
| 217 |
+
"pattern": "suspicious_spending",
|
| 218 |
+
"value": 100000 + (i * 10000)
|
| 219 |
+
},
|
| 220 |
+
timestamp=base_time + timedelta(hours=i)
|
| 221 |
+
)
|
| 222 |
+
episodes.append(episode)
|
| 223 |
+
await episodic_memory.store_episode(episode)
|
| 224 |
+
|
| 225 |
+
# Consolidate episodes
|
| 226 |
+
consolidator = MemoryConsolidation()
|
| 227 |
+
consolidated = await consolidator.consolidate_episodes(episodes)
|
| 228 |
+
|
| 229 |
+
assert consolidated is not None
|
| 230 |
+
assert consolidated.type == EpisodeType.PATTERN
|
| 231 |
+
assert "Entity_A" in consolidated.content.get("entities", [])
|
| 232 |
+
assert consolidated.content.get("pattern_type") == "suspicious_spending"
|
| 233 |
+
|
| 234 |
+
@pytest.mark.asyncio
|
| 235 |
+
async def test_episode_temporal_retrieval(self, episodic_memory):
|
| 236 |
+
"""Test temporal-based episode retrieval."""
|
| 237 |
+
# Store episodes at different times
|
| 238 |
+
now = datetime.now()
|
| 239 |
+
time_points = [
|
| 240 |
+
now - timedelta(days=30), # Old
|
| 241 |
+
now - timedelta(days=7), # Week ago
|
| 242 |
+
now - timedelta(days=1), # Yesterday
|
| 243 |
+
now - timedelta(hours=1) # Recent
|
| 244 |
+
]
|
| 245 |
+
|
| 246 |
+
for i, timestamp in enumerate(time_points):
|
| 247 |
+
episode = Episode(
|
| 248 |
+
id=f"temporal_{i}",
|
| 249 |
+
type=EpisodeType.ANALYSIS,
|
| 250 |
+
content={"data": f"event_{i}"},
|
| 251 |
+
timestamp=timestamp
|
| 252 |
+
)
|
| 253 |
+
await episodic_memory.store_episode(episode)
|
| 254 |
+
|
| 255 |
+
# Retrieve recent episodes
|
| 256 |
+
recent = await episodic_memory.get_recent_episodes(days=3)
|
| 257 |
+
|
| 258 |
+
assert len(recent) == 2 # Yesterday and 1 hour ago
|
| 259 |
+
assert all(ep.id in ["temporal_2", "temporal_3"] for ep in recent)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class TestSemanticMemory:
|
| 263 |
+
"""Test semantic memory and knowledge graph."""
|
| 264 |
+
|
| 265 |
+
@pytest.fixture
|
| 266 |
+
def semantic_memory(self):
|
| 267 |
+
"""Create semantic memory instance."""
|
| 268 |
+
return SemanticMemory()
|
| 269 |
+
|
| 270 |
+
@pytest.mark.asyncio
|
| 271 |
+
async def test_store_concept(self, semantic_memory):
|
| 272 |
+
"""Test storing concepts in semantic memory."""
|
| 273 |
+
concept = Concept(
|
| 274 |
+
id="concept_price_anomaly",
|
| 275 |
+
name="Price Anomaly",
|
| 276 |
+
category="anomaly_type",
|
| 277 |
+
properties={
|
| 278 |
+
"detection_method": "statistical",
|
| 279 |
+
"severity_range": [0.5, 1.0],
|
| 280 |
+
"common_causes": ["overpricing", "emergency_purchase"]
|
| 281 |
+
},
|
| 282 |
+
embeddings=np.random.rand(384).tolist() # Mock embedding
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
await semantic_memory.store_concept(concept)
|
| 286 |
+
|
| 287 |
+
# Retrieve concept
|
| 288 |
+
retrieved = await semantic_memory.get_concept("concept_price_anomaly")
|
| 289 |
+
assert retrieved is not None
|
| 290 |
+
assert retrieved.name == "Price Anomaly"
|
| 291 |
+
assert "statistical" in retrieved.properties["detection_method"]
|
| 292 |
+
|
| 293 |
+
@pytest.mark.asyncio
|
| 294 |
+
async def test_concept_relations(self, semantic_memory):
|
| 295 |
+
"""Test concept relationships in knowledge graph."""
|
| 296 |
+
# Create related concepts
|
| 297 |
+
anomaly = Concept(
|
| 298 |
+
id="anomaly",
|
| 299 |
+
name="Anomaly",
|
| 300 |
+
category="root"
|
| 301 |
+
)
|
| 302 |
+
price_anomaly = Concept(
|
| 303 |
+
id="price_anomaly",
|
| 304 |
+
name="Price Anomaly",
|
| 305 |
+
category="anomaly_type"
|
| 306 |
+
)
|
| 307 |
+
overpricing = Concept(
|
| 308 |
+
id="overpricing",
|
| 309 |
+
name="Overpricing",
|
| 310 |
+
category="anomaly_subtype"
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
# Store concepts
|
| 314 |
+
for concept in [anomaly, price_anomaly, overpricing]:
|
| 315 |
+
await semantic_memory.store_concept(concept)
|
| 316 |
+
|
| 317 |
+
# Create relations
|
| 318 |
+
relations = [
|
| 319 |
+
ConceptRelation(
|
| 320 |
+
source_id="anomaly",
|
| 321 |
+
target_id="price_anomaly",
|
| 322 |
+
relation_type="has_subtype",
|
| 323 |
+
strength=1.0
|
| 324 |
+
),
|
| 325 |
+
ConceptRelation(
|
| 326 |
+
source_id="price_anomaly",
|
| 327 |
+
target_id="overpricing",
|
| 328 |
+
relation_type="includes",
|
| 329 |
+
strength=0.9
|
| 330 |
+
)
|
| 331 |
+
]
|
| 332 |
+
|
| 333 |
+
for relation in relations:
|
| 334 |
+
await semantic_memory.add_relation(relation)
|
| 335 |
+
|
| 336 |
+
# Query related concepts
|
| 337 |
+
related = await semantic_memory.get_related_concepts(
|
| 338 |
+
"anomaly",
|
| 339 |
+
relation_type="has_subtype"
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
assert len(related) >= 1
|
| 343 |
+
assert any(c.id == "price_anomaly" for c in related)
|
| 344 |
+
|
| 345 |
+
@pytest.mark.asyncio
|
| 346 |
+
async def test_semantic_search(self, semantic_memory):
|
| 347 |
+
"""Test semantic similarity search."""
|
| 348 |
+
# Create concepts with embeddings
|
| 349 |
+
concepts = [
|
| 350 |
+
Concept(
|
| 351 |
+
id=f"concept_{i}",
|
| 352 |
+
name=f"Concept {i}",
|
| 353 |
+
category="test",
|
| 354 |
+
embeddings=np.random.rand(384).tolist()
|
| 355 |
+
)
|
| 356 |
+
for i in range(5)
|
| 357 |
+
]
|
| 358 |
+
|
| 359 |
+
for concept in concepts:
|
| 360 |
+
await semantic_memory.store_concept(concept)
|
| 361 |
+
|
| 362 |
+
# Search with query embedding
|
| 363 |
+
query_embedding = np.random.rand(384).tolist()
|
| 364 |
+
similar = await semantic_memory.search_similar(
|
| 365 |
+
query_embedding,
|
| 366 |
+
top_k=3
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
assert len(similar) <= 3
|
| 370 |
+
assert all(isinstance(c, Concept) for c in similar)
|
| 371 |
+
|
| 372 |
+
@pytest.mark.asyncio
|
| 373 |
+
async def test_knowledge_graph_traversal(self, semantic_memory):
|
| 374 |
+
"""Test knowledge graph traversal."""
|
| 375 |
+
# Build a simple knowledge graph
|
| 376 |
+
kg = KnowledgeGraph()
|
| 377 |
+
|
| 378 |
+
# Add nodes
|
| 379 |
+
nodes = ["government", "ministry", "health_ministry", "contracts"]
|
| 380 |
+
for node in nodes:
|
| 381 |
+
kg.add_node(node, {"type": "entity"})
|
| 382 |
+
|
| 383 |
+
# Add edges
|
| 384 |
+
kg.add_edge("government", "ministry", "contains")
|
| 385 |
+
kg.add_edge("ministry", "health_ministry", "instance_of")
|
| 386 |
+
kg.add_edge("health_ministry", "contracts", "manages")
|
| 387 |
+
|
| 388 |
+
# Find path
|
| 389 |
+
path = kg.find_path("government", "contracts")
|
| 390 |
+
|
| 391 |
+
assert path is not None
|
| 392 |
+
assert len(path) == 4 # government -> ministry -> health_ministry -> contracts
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
class TestConversationalMemory:
|
| 396 |
+
"""Test conversational memory system."""
|
| 397 |
+
|
| 398 |
+
@pytest.fixture
|
| 399 |
+
def conv_memory(self):
|
| 400 |
+
"""Create conversational memory instance."""
|
| 401 |
+
return ConversationalMemory(max_turns=50)
|
| 402 |
+
|
| 403 |
+
@pytest.mark.asyncio
|
| 404 |
+
async def test_store_dialog_turn(self, conv_memory):
|
| 405 |
+
"""Test storing dialog turns."""
|
| 406 |
+
turn = DialogTurn(
|
| 407 |
+
id="turn_1",
|
| 408 |
+
conversation_id="conv_123",
|
| 409 |
+
speaker="user",
|
| 410 |
+
utterance="Find anomalies in health ministry contracts",
|
| 411 |
+
intent="investigate_anomalies",
|
| 412 |
+
entities=["health_ministry", "contracts"]
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
await conv_memory.add_turn(turn)
|
| 416 |
+
|
| 417 |
+
# Retrieve conversation
|
| 418 |
+
conversation = await conv_memory.get_conversation("conv_123")
|
| 419 |
+
assert len(conversation) == 1
|
| 420 |
+
assert conversation[0].speaker == "user"
|
| 421 |
+
assert "health_ministry" in conversation[0].entities
|
| 422 |
+
|
| 423 |
+
@pytest.mark.asyncio
|
| 424 |
+
async def test_conversation_context(self, conv_memory):
|
| 425 |
+
"""Test maintaining conversation context."""
|
| 426 |
+
conv_id = "context_test"
|
| 427 |
+
|
| 428 |
+
# Multi-turn conversation
|
| 429 |
+
turns = [
|
| 430 |
+
DialogTurn(
|
| 431 |
+
id="t1",
|
| 432 |
+
conversation_id=conv_id,
|
| 433 |
+
speaker="user",
|
| 434 |
+
utterance="Analyze ministry of health",
|
| 435 |
+
entities=["ministry_of_health"]
|
| 436 |
+
),
|
| 437 |
+
DialogTurn(
|
| 438 |
+
id="t2",
|
| 439 |
+
conversation_id=conv_id,
|
| 440 |
+
speaker="agent",
|
| 441 |
+
utterance="Found 5 anomalies in contracts",
|
| 442 |
+
entities=["anomalies", "contracts"]
|
| 443 |
+
),
|
| 444 |
+
DialogTurn(
|
| 445 |
+
id="t3",
|
| 446 |
+
conversation_id=conv_id,
|
| 447 |
+
speaker="user",
|
| 448 |
+
utterance="Show me the price anomalies",
|
| 449 |
+
intent="filter_results",
|
| 450 |
+
entities=["price_anomalies"]
|
| 451 |
+
)
|
| 452 |
+
]
|
| 453 |
+
|
| 454 |
+
for turn in turns:
|
| 455 |
+
await conv_memory.add_turn(turn)
|
| 456 |
+
|
| 457 |
+
# Get context
|
| 458 |
+
context = await conv_memory.get_context(conv_id)
|
| 459 |
+
|
| 460 |
+
assert context is not None
|
| 461 |
+
assert len(context.entities) >= 3
|
| 462 |
+
assert "ministry_of_health" in context.entities
|
| 463 |
+
assert context.current_topic is not None
|
| 464 |
+
|
| 465 |
+
@pytest.mark.asyncio
|
| 466 |
+
async def test_intent_memory(self, conv_memory):
|
| 467 |
+
"""Test intent pattern memory."""
|
| 468 |
+
# Store intent patterns
|
| 469 |
+
intents = [
|
| 470 |
+
("Find anomalies in {entity}", "investigate_anomalies"),
|
| 471 |
+
("Show me {anomaly_type} anomalies", "filter_anomalies"),
|
| 472 |
+
("Generate report for {investigation}", "generate_report")
|
| 473 |
+
]
|
| 474 |
+
|
| 475 |
+
intent_memory = IntentMemory()
|
| 476 |
+
for pattern, intent in intents:
|
| 477 |
+
await intent_memory.store_pattern(pattern, intent)
|
| 478 |
+
|
| 479 |
+
# Match new utterance
|
| 480 |
+
utterance = "Find anomalies in education ministry"
|
| 481 |
+
matched_intent = await intent_memory.match_intent(utterance)
|
| 482 |
+
|
| 483 |
+
assert matched_intent is not None
|
| 484 |
+
assert matched_intent["intent"] == "investigate_anomalies"
|
| 485 |
+
assert matched_intent["entities"]["entity"] == "education ministry"
|
| 486 |
+
|
| 487 |
+
@pytest.mark.asyncio
|
| 488 |
+
async def test_conversation_summarization(self, conv_memory):
|
| 489 |
+
"""Test conversation summarization."""
|
| 490 |
+
conv_id = "long_conv"
|
| 491 |
+
|
| 492 |
+
# Create long conversation
|
| 493 |
+
for i in range(20):
|
| 494 |
+
turn = DialogTurn(
|
| 495 |
+
id=f"turn_{i}",
|
| 496 |
+
conversation_id=conv_id,
|
| 497 |
+
speaker="user" if i % 2 == 0 else "agent",
|
| 498 |
+
utterance=f"Message {i} about topic {i // 5}"
|
| 499 |
+
)
|
| 500 |
+
await conv_memory.add_turn(turn)
|
| 501 |
+
|
| 502 |
+
# Summarize conversation
|
| 503 |
+
summary = await conv_memory.summarize_conversation(conv_id)
|
| 504 |
+
|
| 505 |
+
assert summary is not None
|
| 506 |
+
assert "topics" in summary
|
| 507 |
+
assert "key_points" in summary
|
| 508 |
+
assert len(summary["key_points"]) < 20 # Condensed
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
class TestMemoryIntegration:
|
| 512 |
+
"""Test integration between memory systems."""
|
| 513 |
+
|
| 514 |
+
@pytest.mark.asyncio
|
| 515 |
+
async def test_episodic_to_semantic_transfer(self):
|
| 516 |
+
"""Test transferring episodic memories to semantic knowledge."""
|
| 517 |
+
episodic = EpisodicMemory()
|
| 518 |
+
semantic = SemanticMemory()
|
| 519 |
+
|
| 520 |
+
# Create multiple similar episodes
|
| 521 |
+
for i in range(10):
|
| 522 |
+
episode = Episode(
|
| 523 |
+
id=f"pattern_{i}",
|
| 524 |
+
type=EpisodeType.INVESTIGATION,
|
| 525 |
+
content={
|
| 526 |
+
"entity": "Ministry X",
|
| 527 |
+
"pattern": "end_of_year_spending_spike",
|
| 528 |
+
"severity": 0.8 + (i * 0.01)
|
| 529 |
+
}
|
| 530 |
+
)
|
| 531 |
+
await episodic.store_episode(episode)
|
| 532 |
+
|
| 533 |
+
# Consolidate into semantic knowledge
|
| 534 |
+
pattern_concept = Concept(
|
| 535 |
+
id="end_year_spike",
|
| 536 |
+
name="End of Year Spending Spike",
|
| 537 |
+
category="spending_pattern",
|
| 538 |
+
properties={
|
| 539 |
+
"frequency": "annual",
|
| 540 |
+
"typical_months": [11, 12],
|
| 541 |
+
"average_severity": 0.85
|
| 542 |
+
}
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
await semantic.store_concept(pattern_concept)
|
| 546 |
+
|
| 547 |
+
# Verify knowledge transfer
|
| 548 |
+
retrieved = await semantic.get_concept("end_year_spike")
|
| 549 |
+
assert retrieved is not None
|
| 550 |
+
assert retrieved.properties["frequency"] == "annual"
|
| 551 |
+
|
| 552 |
+
@pytest.mark.asyncio
|
| 553 |
+
async def test_memory_cross_referencing(self):
|
| 554 |
+
"""Test cross-referencing between memory types."""
|
| 555 |
+
episodic = EpisodicMemory()
|
| 556 |
+
semantic = SemanticMemory()
|
| 557 |
+
conversational = ConversationalMemory()
|
| 558 |
+
|
| 559 |
+
# Create related memories
|
| 560 |
+
episode = Episode(
|
| 561 |
+
id="cross_ref_ep",
|
| 562 |
+
type=EpisodeType.DISCOVERY,
|
| 563 |
+
content={
|
| 564 |
+
"discovery": "New fraud pattern",
|
| 565 |
+
"concept_id": "fraud_pattern_123"
|
| 566 |
+
}
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
concept = Concept(
|
| 570 |
+
id="fraud_pattern_123",
|
| 571 |
+
name="Invoice Splitting Fraud",
|
| 572 |
+
category="fraud_type"
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
turn = DialogTurn(
|
| 576 |
+
id="turn_cross",
|
| 577 |
+
conversation_id="conv_cross",
|
| 578 |
+
speaker="agent",
|
| 579 |
+
utterance="Discovered new invoice splitting fraud pattern",
|
| 580 |
+
entities=["fraud_pattern_123"]
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
# Store all
|
| 584 |
+
await episodic.store_episode(episode)
|
| 585 |
+
await semantic.store_concept(concept)
|
| 586 |
+
await conversational.add_turn(turn)
|
| 587 |
+
|
| 588 |
+
# Cross-reference
|
| 589 |
+
episode_ref = await episodic.get_episode("cross_ref_ep")
|
| 590 |
+
concept_ref = await semantic.get_concept(
|
| 591 |
+
episode_ref.content["concept_id"]
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
assert concept_ref is not None
|
| 595 |
+
assert concept_ref.name == "Invoice Splitting Fraud"
|