anderson-ufrj
commited on
Commit
·
8d9d872
1
Parent(s):
48a4081
test(ml): add anomaly detection pipeline tests
Browse files- Test statistical anomaly detection (Z-score, IQR, MAD)
- Test ML-based anomaly detection methods
- Test spectral analysis implementation
- Test pattern detection algorithms
- Test ensemble anomaly detector
- Add tests for feature engineering
tests/unit/test_anomaly_detection.py
ADDED
|
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unit tests for anomaly detection components."""
|
| 2 |
+
import pytest
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from datetime import datetime, timedelta
|
| 6 |
+
from unittest.mock import MagicMock, patch
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
from src.ml.anomaly_detector import (
|
| 10 |
+
AnomalyDetector,
|
| 11 |
+
AnomalyResult,
|
| 12 |
+
AnomalyType,
|
| 13 |
+
StatisticalAnomalyDetector,
|
| 14 |
+
MLAnomalyDetector,
|
| 15 |
+
EnsembleAnomalyDetector
|
| 16 |
+
)
|
| 17 |
+
from src.ml.spectral_analyzer import SpectralAnalyzer, SpectralResult
|
| 18 |
+
from src.ml.pattern_analyzer import PatternAnalyzer, PatternType
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class TestAnomalyResult:
|
| 22 |
+
"""Test AnomalyResult data structure."""
|
| 23 |
+
|
| 24 |
+
def test_anomaly_result_creation(self):
|
| 25 |
+
"""Test creating anomaly result."""
|
| 26 |
+
result = AnomalyResult(
|
| 27 |
+
is_anomaly=True,
|
| 28 |
+
score=0.85,
|
| 29 |
+
type=AnomalyType.STATISTICAL,
|
| 30 |
+
description="Price significantly above average",
|
| 31 |
+
evidence={"z_score": 3.2, "mean": 100000, "value": 250000},
|
| 32 |
+
severity="high"
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
assert result.is_anomaly is True
|
| 36 |
+
assert result.score == 0.85
|
| 37 |
+
assert result.type == AnomalyType.STATISTICAL
|
| 38 |
+
assert result.severity == "high"
|
| 39 |
+
assert "z_score" in result.evidence
|
| 40 |
+
|
| 41 |
+
def test_anomaly_result_to_dict(self):
|
| 42 |
+
"""Test converting anomaly result to dictionary."""
|
| 43 |
+
result = AnomalyResult(
|
| 44 |
+
is_anomaly=True,
|
| 45 |
+
score=0.75,
|
| 46 |
+
type=AnomalyType.PATTERN,
|
| 47 |
+
description="Unusual temporal pattern detected"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
result_dict = result.to_dict()
|
| 51 |
+
|
| 52 |
+
assert isinstance(result_dict, dict)
|
| 53 |
+
assert result_dict["is_anomaly"] is True
|
| 54 |
+
assert result_dict["score"] == 0.75
|
| 55 |
+
assert result_dict["type"] == "pattern"
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class TestStatisticalAnomalyDetector:
|
| 59 |
+
"""Test statistical anomaly detection methods."""
|
| 60 |
+
|
| 61 |
+
@pytest.fixture
|
| 62 |
+
def detector(self):
|
| 63 |
+
"""Create statistical detector instance."""
|
| 64 |
+
return StatisticalAnomalyDetector(z_score_threshold=2.5)
|
| 65 |
+
|
| 66 |
+
def test_z_score_detection_normal(self, detector):
|
| 67 |
+
"""Test Z-score detection with normal values."""
|
| 68 |
+
# Generate normal data
|
| 69 |
+
np.random.seed(42)
|
| 70 |
+
values = np.random.normal(100, 20, 100).tolist()
|
| 71 |
+
|
| 72 |
+
# Test with a normal value
|
| 73 |
+
result = detector.detect_z_score(values, 105)
|
| 74 |
+
|
| 75 |
+
assert result.is_anomaly is False
|
| 76 |
+
assert result.score < 0.5
|
| 77 |
+
assert result.type == AnomalyType.STATISTICAL
|
| 78 |
+
|
| 79 |
+
def test_z_score_detection_anomaly(self, detector):
|
| 80 |
+
"""Test Z-score detection with anomalous value."""
|
| 81 |
+
# Generate normal data
|
| 82 |
+
np.random.seed(42)
|
| 83 |
+
values = np.random.normal(100, 20, 100).tolist()
|
| 84 |
+
|
| 85 |
+
# Test with an extreme value
|
| 86 |
+
result = detector.detect_z_score(values, 200)
|
| 87 |
+
|
| 88 |
+
assert result.is_anomaly is True
|
| 89 |
+
assert result.score > 0.7
|
| 90 |
+
assert "z_score" in result.evidence
|
| 91 |
+
assert result.evidence["z_score"] > 2.5
|
| 92 |
+
|
| 93 |
+
def test_iqr_detection(self, detector):
|
| 94 |
+
"""Test IQR-based outlier detection."""
|
| 95 |
+
# Create data with outliers
|
| 96 |
+
values = list(range(1, 101)) # 1 to 100
|
| 97 |
+
outlier = 200
|
| 98 |
+
|
| 99 |
+
result = detector.detect_iqr_outlier(values, outlier)
|
| 100 |
+
|
| 101 |
+
assert result.is_anomaly is True
|
| 102 |
+
assert result.score > 0.8
|
| 103 |
+
assert "iqr" in result.evidence
|
| 104 |
+
assert "q1" in result.evidence
|
| 105 |
+
assert "q3" in result.evidence
|
| 106 |
+
|
| 107 |
+
def test_modified_z_score_detection(self, detector):
|
| 108 |
+
"""Test Modified Z-score (MAD-based) detection."""
|
| 109 |
+
# Generate data with outliers
|
| 110 |
+
values = [10, 12, 13, 11, 14, 12, 11, 13, 200] # 200 is outlier
|
| 111 |
+
|
| 112 |
+
result = detector.detect_modified_z_score(values[:-1], 200)
|
| 113 |
+
|
| 114 |
+
assert result.is_anomaly is True
|
| 115 |
+
assert result.score > 0.8
|
| 116 |
+
assert "mad_z_score" in result.evidence
|
| 117 |
+
|
| 118 |
+
def test_insufficient_data(self, detector):
|
| 119 |
+
"""Test handling of insufficient data."""
|
| 120 |
+
# Too few values
|
| 121 |
+
values = [100, 110]
|
| 122 |
+
|
| 123 |
+
result = detector.detect_z_score(values, 120)
|
| 124 |
+
|
| 125 |
+
assert result.is_anomaly is False
|
| 126 |
+
assert "Insufficient data" in result.description
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class TestMLAnomalyDetector:
|
| 130 |
+
"""Test machine learning anomaly detection."""
|
| 131 |
+
|
| 132 |
+
@pytest.fixture
|
| 133 |
+
def detector(self):
|
| 134 |
+
"""Create ML detector instance."""
|
| 135 |
+
return MLAnomalyDetector()
|
| 136 |
+
|
| 137 |
+
@pytest.fixture
|
| 138 |
+
def sample_data(self):
|
| 139 |
+
"""Create sample contract data."""
|
| 140 |
+
np.random.seed(42)
|
| 141 |
+
n_samples = 100
|
| 142 |
+
|
| 143 |
+
# Normal contracts
|
| 144 |
+
normal_data = pd.DataFrame({
|
| 145 |
+
'value': np.random.normal(100000, 20000, n_samples),
|
| 146 |
+
'duration_days': np.random.normal(180, 30, n_samples),
|
| 147 |
+
'n_items': np.random.poisson(10, n_samples),
|
| 148 |
+
'supplier_history': np.random.randint(1, 20, n_samples)
|
| 149 |
+
})
|
| 150 |
+
|
| 151 |
+
# Add some anomalies
|
| 152 |
+
anomalies = pd.DataFrame({
|
| 153 |
+
'value': [500000, 1000, 300000], # Too high/low
|
| 154 |
+
'duration_days': [10, 500, 365], # Too short/long
|
| 155 |
+
'n_items': [100, 1, 50], # Too many/few
|
| 156 |
+
'supplier_history': [0, 0, 1] # New suppliers
|
| 157 |
+
})
|
| 158 |
+
|
| 159 |
+
return pd.concat([normal_data, anomalies], ignore_index=True)
|
| 160 |
+
|
| 161 |
+
def test_isolation_forest_detection(self, detector, sample_data):
|
| 162 |
+
"""Test Isolation Forest anomaly detection."""
|
| 163 |
+
# Train on normal data
|
| 164 |
+
normal_data = sample_data.iloc[:90]
|
| 165 |
+
detector.fit_isolation_forest(normal_data)
|
| 166 |
+
|
| 167 |
+
# Test on anomalies
|
| 168 |
+
anomaly_data = sample_data.iloc[-3:]
|
| 169 |
+
results = detector.detect_isolation_forest(anomaly_data)
|
| 170 |
+
|
| 171 |
+
assert len(results) == 3
|
| 172 |
+
assert sum(r.is_anomaly for r in results) >= 2 # At least 2 anomalies
|
| 173 |
+
assert all(r.type == AnomalyType.ML for r in results)
|
| 174 |
+
|
| 175 |
+
def test_clustering_anomaly_detection(self, detector, sample_data):
|
| 176 |
+
"""Test clustering-based anomaly detection."""
|
| 177 |
+
# Fit clustering model
|
| 178 |
+
detector.fit_clustering(sample_data)
|
| 179 |
+
|
| 180 |
+
# Test on extreme outlier
|
| 181 |
+
outlier = pd.DataFrame({
|
| 182 |
+
'value': [10000000], # 100x normal
|
| 183 |
+
'duration_days': [1],
|
| 184 |
+
'n_items': [1000],
|
| 185 |
+
'supplier_history': [0]
|
| 186 |
+
})
|
| 187 |
+
|
| 188 |
+
results = detector.detect_clustering_anomaly(outlier)
|
| 189 |
+
|
| 190 |
+
assert len(results) == 1
|
| 191 |
+
assert results[0].is_anomaly is True
|
| 192 |
+
assert results[0].score > 0.8
|
| 193 |
+
|
| 194 |
+
def test_autoencoder_detection(self, detector, sample_data):
|
| 195 |
+
"""Test autoencoder-based anomaly detection."""
|
| 196 |
+
# Train autoencoder
|
| 197 |
+
normal_data = sample_data.iloc[:80]
|
| 198 |
+
detector.fit_autoencoder(normal_data, epochs=5) # Few epochs for testing
|
| 199 |
+
|
| 200 |
+
# Test on normal and anomalous data
|
| 201 |
+
test_data = sample_data.iloc[80:]
|
| 202 |
+
results = detector.detect_autoencoder_anomaly(test_data)
|
| 203 |
+
|
| 204 |
+
assert len(results) == len(test_data)
|
| 205 |
+
# Should detect some anomalies
|
| 206 |
+
anomaly_count = sum(r.is_anomaly for r in results)
|
| 207 |
+
assert anomaly_count > 0
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class TestSpectralAnalyzer:
|
| 211 |
+
"""Test spectral analysis for anomaly detection."""
|
| 212 |
+
|
| 213 |
+
@pytest.fixture
|
| 214 |
+
def analyzer(self):
|
| 215 |
+
"""Create spectral analyzer instance."""
|
| 216 |
+
return SpectralAnalyzer()
|
| 217 |
+
|
| 218 |
+
@pytest.fixture
|
| 219 |
+
def periodic_signal(self):
|
| 220 |
+
"""Create periodic signal with anomalies."""
|
| 221 |
+
# Daily data for 365 days
|
| 222 |
+
days = np.arange(365)
|
| 223 |
+
|
| 224 |
+
# Normal pattern: weekly and monthly cycles
|
| 225 |
+
weekly = 10 * np.sin(2 * np.pi * days / 7)
|
| 226 |
+
monthly = 20 * np.sin(2 * np.pi * days / 30)
|
| 227 |
+
noise = np.random.normal(0, 5, 365)
|
| 228 |
+
|
| 229 |
+
signal = 100 + weekly + monthly + noise
|
| 230 |
+
|
| 231 |
+
# Add anomalies (sudden spikes)
|
| 232 |
+
signal[100] += 50 # Day 100
|
| 233 |
+
signal[200] += 70 # Day 200
|
| 234 |
+
signal[300] -= 60 # Day 300
|
| 235 |
+
|
| 236 |
+
return days, signal
|
| 237 |
+
|
| 238 |
+
def test_fft_analysis(self, analyzer, periodic_signal):
|
| 239 |
+
"""Test FFT-based spectral analysis."""
|
| 240 |
+
days, signal = periodic_signal
|
| 241 |
+
|
| 242 |
+
result = analyzer.analyze_spectrum(signal, sampling_rate=1.0) # 1 sample/day
|
| 243 |
+
|
| 244 |
+
assert isinstance(result, SpectralResult)
|
| 245 |
+
assert result.dominant_frequencies is not None
|
| 246 |
+
assert len(result.dominant_frequencies) > 0
|
| 247 |
+
|
| 248 |
+
# Should detect weekly frequency (~0.14 Hz = 1/7 days)
|
| 249 |
+
weekly_freq = 1/7
|
| 250 |
+
assert any(abs(f - weekly_freq) < 0.01 for f in result.dominant_frequencies)
|
| 251 |
+
|
| 252 |
+
def test_spectral_anomaly_detection(self, analyzer, periodic_signal):
|
| 253 |
+
"""Test spectral anomaly detection."""
|
| 254 |
+
days, signal = periodic_signal
|
| 255 |
+
|
| 256 |
+
# Analyze normal portion
|
| 257 |
+
normal_result = analyzer.analyze_spectrum(signal[:90])
|
| 258 |
+
|
| 259 |
+
# Analyze anomalous portion
|
| 260 |
+
anomaly_result = analyzer.analyze_spectrum(signal[95:105])
|
| 261 |
+
|
| 262 |
+
# Spectral entropy should be higher in anomalous region
|
| 263 |
+
assert anomaly_result.spectral_entropy > normal_result.spectral_entropy
|
| 264 |
+
|
| 265 |
+
def test_periodogram_analysis(self, analyzer):
|
| 266 |
+
"""Test periodogram computation."""
|
| 267 |
+
# Create simple sinusoidal signal
|
| 268 |
+
t = np.linspace(0, 10, 1000)
|
| 269 |
+
frequency = 2.5 # Hz
|
| 270 |
+
signal = np.sin(2 * np.pi * frequency * t)
|
| 271 |
+
|
| 272 |
+
result = analyzer.compute_periodogram(signal, sampling_rate=100)
|
| 273 |
+
|
| 274 |
+
assert "frequencies" in result
|
| 275 |
+
assert "power" in result
|
| 276 |
+
|
| 277 |
+
# Peak should be at the signal frequency
|
| 278 |
+
peak_idx = np.argmax(result["power"])
|
| 279 |
+
peak_freq = result["frequencies"][peak_idx]
|
| 280 |
+
assert abs(peak_freq - frequency) < 0.1
|
| 281 |
+
|
| 282 |
+
def test_wavelet_analysis(self, analyzer):
|
| 283 |
+
"""Test wavelet transform analysis."""
|
| 284 |
+
# Create signal with time-varying frequency
|
| 285 |
+
t = np.linspace(0, 1, 1000)
|
| 286 |
+
chirp = np.sin(2 * np.pi * (10 * t + 5 * t**2))
|
| 287 |
+
|
| 288 |
+
result = analyzer.wavelet_analysis(chirp)
|
| 289 |
+
|
| 290 |
+
assert "scales" in result
|
| 291 |
+
assert "coefficients" in result
|
| 292 |
+
assert result["coefficients"].shape[0] == len(result["scales"])
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
class TestPatternAnalyzer:
|
| 296 |
+
"""Test pattern analysis for anomaly detection."""
|
| 297 |
+
|
| 298 |
+
@pytest.fixture
|
| 299 |
+
def analyzer(self):
|
| 300 |
+
"""Create pattern analyzer instance."""
|
| 301 |
+
return PatternAnalyzer()
|
| 302 |
+
|
| 303 |
+
@pytest.fixture
|
| 304 |
+
def time_series_data(self):
|
| 305 |
+
"""Create time series data with patterns."""
|
| 306 |
+
dates = pd.date_range(start='2023-01-01', periods=365, freq='D')
|
| 307 |
+
|
| 308 |
+
# Base trend
|
| 309 |
+
trend = np.linspace(100, 150, 365)
|
| 310 |
+
|
| 311 |
+
# Seasonal pattern
|
| 312 |
+
seasonal = 20 * np.sin(2 * np.pi * np.arange(365) / 365)
|
| 313 |
+
|
| 314 |
+
# Weekly pattern
|
| 315 |
+
weekly = 10 * np.sin(2 * np.pi * np.arange(365) / 7)
|
| 316 |
+
|
| 317 |
+
# Random noise
|
| 318 |
+
noise = np.random.normal(0, 5, 365)
|
| 319 |
+
|
| 320 |
+
values = trend + seasonal + weekly + noise
|
| 321 |
+
|
| 322 |
+
return pd.DataFrame({
|
| 323 |
+
'date': dates,
|
| 324 |
+
'value': values
|
| 325 |
+
})
|
| 326 |
+
|
| 327 |
+
def test_temporal_pattern_detection(self, analyzer, time_series_data):
|
| 328 |
+
"""Test temporal pattern detection."""
|
| 329 |
+
patterns = analyzer.detect_temporal_patterns(time_series_data)
|
| 330 |
+
|
| 331 |
+
assert len(patterns) > 0
|
| 332 |
+
|
| 333 |
+
# Should detect trend
|
| 334 |
+
trend_patterns = [p for p in patterns if p.type == PatternType.TREND]
|
| 335 |
+
assert len(trend_patterns) > 0
|
| 336 |
+
|
| 337 |
+
# Should detect seasonality
|
| 338 |
+
seasonal_patterns = [p for p in patterns if p.type == PatternType.SEASONAL]
|
| 339 |
+
assert len(seasonal_patterns) > 0
|
| 340 |
+
|
| 341 |
+
def test_clustering_pattern_detection(self, analyzer):
|
| 342 |
+
"""Test clustering pattern detection."""
|
| 343 |
+
# Create data with clear clusters
|
| 344 |
+
np.random.seed(42)
|
| 345 |
+
|
| 346 |
+
# Three clusters
|
| 347 |
+
cluster1 = np.random.normal([0, 0], 0.5, (50, 2))
|
| 348 |
+
cluster2 = np.random.normal([5, 5], 0.5, (50, 2))
|
| 349 |
+
cluster3 = np.random.normal([10, 0], 0.5, (50, 2))
|
| 350 |
+
|
| 351 |
+
data = pd.DataFrame(
|
| 352 |
+
np.vstack([cluster1, cluster2, cluster3]),
|
| 353 |
+
columns=['feature1', 'feature2']
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
patterns = analyzer.detect_clustering_patterns(data)
|
| 357 |
+
|
| 358 |
+
assert len(patterns) > 0
|
| 359 |
+
cluster_patterns = [p for p in patterns if p.type == PatternType.CLUSTER]
|
| 360 |
+
assert len(cluster_patterns) == 3 # Three clusters
|
| 361 |
+
|
| 362 |
+
def test_correlation_pattern_detection(self, analyzer):
|
| 363 |
+
"""Test correlation pattern detection."""
|
| 364 |
+
# Create correlated data
|
| 365 |
+
np.random.seed(42)
|
| 366 |
+
n = 100
|
| 367 |
+
|
| 368 |
+
x = np.random.normal(0, 1, n)
|
| 369 |
+
data = pd.DataFrame({
|
| 370 |
+
'feature1': x,
|
| 371 |
+
'feature2': 2 * x + np.random.normal(0, 0.1, n), # Strong positive
|
| 372 |
+
'feature3': -1.5 * x + np.random.normal(0, 0.1, n), # Strong negative
|
| 373 |
+
'feature4': np.random.normal(0, 1, n) # No correlation
|
| 374 |
+
})
|
| 375 |
+
|
| 376 |
+
patterns = analyzer.detect_correlation_patterns(data)
|
| 377 |
+
|
| 378 |
+
correlation_patterns = [p for p in patterns if p.type == PatternType.CORRELATION]
|
| 379 |
+
assert len(correlation_patterns) >= 2 # At least 2 strong correlations
|
| 380 |
+
|
| 381 |
+
# Check correlation values
|
| 382 |
+
for pattern in correlation_patterns:
|
| 383 |
+
assert abs(pattern.confidence) > 0.8 # Strong correlation
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
class TestEnsembleAnomalyDetector:
|
| 387 |
+
"""Test ensemble anomaly detection."""
|
| 388 |
+
|
| 389 |
+
@pytest.fixture
|
| 390 |
+
def detector(self):
|
| 391 |
+
"""Create ensemble detector instance."""
|
| 392 |
+
return EnsembleAnomalyDetector()
|
| 393 |
+
|
| 394 |
+
def test_ensemble_voting(self, detector):
|
| 395 |
+
"""Test ensemble voting mechanism."""
|
| 396 |
+
# Create mock individual results
|
| 397 |
+
results = [
|
| 398 |
+
AnomalyResult(is_anomaly=True, score=0.8, type=AnomalyType.STATISTICAL),
|
| 399 |
+
AnomalyResult(is_anomaly=True, score=0.9, type=AnomalyType.ML),
|
| 400 |
+
AnomalyResult(is_anomaly=False, score=0.3, type=AnomalyType.PATTERN)
|
| 401 |
+
]
|
| 402 |
+
|
| 403 |
+
# Test majority voting
|
| 404 |
+
ensemble_result = detector.combine_results(results, method='majority')
|
| 405 |
+
|
| 406 |
+
assert ensemble_result.is_anomaly is True # 2 out of 3 say anomaly
|
| 407 |
+
assert ensemble_result.type == AnomalyType.ENSEMBLE
|
| 408 |
+
|
| 409 |
+
def test_ensemble_averaging(self, detector):
|
| 410 |
+
"""Test ensemble score averaging."""
|
| 411 |
+
results = [
|
| 412 |
+
AnomalyResult(is_anomaly=True, score=0.8, type=AnomalyType.STATISTICAL),
|
| 413 |
+
AnomalyResult(is_anomaly=True, score=0.9, type=AnomalyType.ML),
|
| 414 |
+
AnomalyResult(is_anomaly=False, score=0.3, type=AnomalyType.PATTERN)
|
| 415 |
+
]
|
| 416 |
+
|
| 417 |
+
# Test averaging
|
| 418 |
+
ensemble_result = detector.combine_results(results, method='average')
|
| 419 |
+
|
| 420 |
+
expected_score = (0.8 + 0.9 + 0.3) / 3
|
| 421 |
+
assert abs(ensemble_result.score - expected_score) < 0.01
|
| 422 |
+
|
| 423 |
+
def test_weighted_ensemble(self, detector):
|
| 424 |
+
"""Test weighted ensemble combination."""
|
| 425 |
+
results = [
|
| 426 |
+
AnomalyResult(is_anomaly=True, score=0.8, type=AnomalyType.STATISTICAL),
|
| 427 |
+
AnomalyResult(is_anomaly=True, score=0.6, type=AnomalyType.ML)
|
| 428 |
+
]
|
| 429 |
+
|
| 430 |
+
weights = {
|
| 431 |
+
AnomalyType.STATISTICAL: 0.7,
|
| 432 |
+
AnomalyType.ML: 0.3
|
| 433 |
+
}
|
| 434 |
+
|
| 435 |
+
ensemble_result = detector.combine_results(results, method='weighted', weights=weights)
|
| 436 |
+
|
| 437 |
+
expected_score = 0.8 * 0.7 + 0.6 * 0.3
|
| 438 |
+
assert abs(ensemble_result.score - expected_score) < 0.01
|