feat(investigations): implement comprehensive forensic enrichment system
Browse filesImplemented ultra-detailed forensic investigation system that transforms
basic anomaly detection into comprehensive reports with complete evidence,
legal framework, and actionable recommendations.
Key Features:
- Created ForensicAnomalyResult data model with complete traceability
- Structured evidence collection (documents, statistical, comparative)
- Official document tracking with Portal da Transparência URLs
- Legal entity information (CNPJ/CPF, sanctions, previous contracts)
- Financial impact analysis with opportunity cost calculations
- Detailed event timeline tracking
- Legal framework determination (applicable laws, oversight bodies)
- Actionable recommendations with submission URLs and contact info
Implementation Details:
- Added ForensicEnrichmentService for automatic anomaly enrichment
- Integrated enrichment into investigation execution flow
- Generates direct links to Portal da Transparência contracts
- Generates links to Receita Federal and other official sources
- Provides TCU, CGU, and MPF submission URLs for denouncements
- Includes fallback to basic results if enrichment fails
- All data is reproducible and auditable
This comprehensive approach provides citizens with detailed evidence
and clear next steps for addressing government irregularities.
|
@@ -21,6 +21,7 @@ from src.api.middleware.authentication import get_current_user
|
|
| 21 |
from src.tools import TransparencyAPIFilter
|
| 22 |
from src.infrastructure.observability.metrics import track_time, count_calls, BusinessMetrics
|
| 23 |
from src.services.investigation_service_selector import investigation_service
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
logger = get_logger(__name__)
|
|
@@ -486,27 +487,62 @@ async def _run_investigation(investigation_id: str, request: InvestigationReques
|
|
| 486 |
context=context
|
| 487 |
)
|
| 488 |
|
| 489 |
-
investigation["current_phase"] = "
|
| 490 |
investigation["progress"] = 0.7
|
| 491 |
-
|
| 492 |
-
# Process results
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 507 |
|
| 508 |
investigation["anomalies_detected"] = len(results)
|
| 509 |
-
investigation["records_processed"] = sum(len(r.
|
| 510 |
|
| 511 |
# Generate summary
|
| 512 |
investigation["current_phase"] = "summary_generation"
|
|
|
|
| 21 |
from src.tools import TransparencyAPIFilter
|
| 22 |
from src.infrastructure.observability.metrics import track_time, count_calls, BusinessMetrics
|
| 23 |
from src.services.investigation_service_selector import investigation_service
|
| 24 |
+
from src.services.forensic_enrichment_service import forensic_enrichment_service
|
| 25 |
|
| 26 |
|
| 27 |
logger = get_logger(__name__)
|
|
|
|
| 487 |
context=context
|
| 488 |
)
|
| 489 |
|
| 490 |
+
investigation["current_phase"] = "forensic_enrichment"
|
| 491 |
investigation["progress"] = 0.7
|
| 492 |
+
|
| 493 |
+
# Process results with forensic enrichment
|
| 494 |
+
enriched_results = []
|
| 495 |
+
for result in results:
|
| 496 |
+
try:
|
| 497 |
+
# Extract contract data from affected entities
|
| 498 |
+
contract_data = result.affected_entities[0] if result.affected_entities else {}
|
| 499 |
+
|
| 500 |
+
# Get comparative data from remaining affected entities or metadata
|
| 501 |
+
comparative_data = result.affected_entities[1:] if len(result.affected_entities) > 1 else None
|
| 502 |
+
|
| 503 |
+
# Build basic anomaly structure
|
| 504 |
+
basic_anomaly = {
|
| 505 |
+
"type": result.anomaly_type,
|
| 506 |
+
"severity": result.severity,
|
| 507 |
+
"confidence": result.confidence,
|
| 508 |
+
"description": result.description,
|
| 509 |
+
"explanation": result.explanation if request.include_explanations else "",
|
| 510 |
+
"recommendations": result.recommendations,
|
| 511 |
+
"metadata": result.metadata,
|
| 512 |
+
}
|
| 513 |
+
|
| 514 |
+
# Enrich with forensic details
|
| 515 |
+
forensic_result = await forensic_enrichment_service.enrich_anomaly(
|
| 516 |
+
basic_anomaly=basic_anomaly,
|
| 517 |
+
contract_data=contract_data,
|
| 518 |
+
comparative_data=comparative_data
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
enriched_results.append(forensic_result.to_dict())
|
| 522 |
+
|
| 523 |
+
except Exception as e:
|
| 524 |
+
logger.warning(
|
| 525 |
+
"Failed to enrich anomaly with forensic details, using basic result",
|
| 526 |
+
error=str(e),
|
| 527 |
+
anomaly_type=result.anomaly_type
|
| 528 |
+
)
|
| 529 |
+
# Fallback to basic result if enrichment fails
|
| 530 |
+
enriched_results.append({
|
| 531 |
+
"anomaly_id": str(uuid4()),
|
| 532 |
+
"type": result.anomaly_type,
|
| 533 |
+
"severity": result.severity,
|
| 534 |
+
"confidence": result.confidence,
|
| 535 |
+
"description": result.description,
|
| 536 |
+
"explanation": result.explanation if request.include_explanations else "",
|
| 537 |
+
"affected_records": result.affected_entities,
|
| 538 |
+
"suggested_actions": result.recommendations,
|
| 539 |
+
"metadata": result.metadata,
|
| 540 |
+
})
|
| 541 |
+
|
| 542 |
+
investigation["results"] = enriched_results
|
| 543 |
|
| 544 |
investigation["anomalies_detected"] = len(results)
|
| 545 |
+
investigation["records_processed"] = sum(len(r.affected_entities) for r in results)
|
| 546 |
|
| 547 |
# Generate summary
|
| 548 |
investigation["current_phase"] = "summary_generation"
|
|
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Forensic Investigation Models - Ultra-detailed investigation data structures.
|
| 3 |
+
|
| 4 |
+
This module defines comprehensive data models for storing detailed forensic
|
| 5 |
+
evidence, legal references, and documentary proof for government transparency.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import List, Optional, Dict, Any
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
from dataclasses import dataclass, field
|
| 11 |
+
from enum import Enum
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class AnomalySeverity(str, Enum):
|
| 15 |
+
"""Severity levels for anomalies."""
|
| 16 |
+
CRITICAL = "critical" # Suspeita forte de irregularidade grave
|
| 17 |
+
HIGH = "high" # Irregularidade significativa
|
| 18 |
+
MEDIUM = "medium" # Padrão suspeito que merece atenção
|
| 19 |
+
LOW = "low" # Desvio menor, monitoramento recomendado
|
| 20 |
+
INFO = "info" # Informativo, sem suspeita
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class EvidenceType(str, Enum):
|
| 24 |
+
"""Types of evidence collected."""
|
| 25 |
+
DOCUMENT = "document" # Documento oficial
|
| 26 |
+
STATISTICAL = "statistical" # Análise estatística
|
| 27 |
+
COMPARATIVE = "comparative" # Comparação com outros casos
|
| 28 |
+
TEMPORAL = "temporal" # Análise temporal/padrões
|
| 29 |
+
FINANCIAL = "financial" # Análise financeira
|
| 30 |
+
LEGAL = "legal" # Base legal/jurídica
|
| 31 |
+
WITNESS = "witness" # Declarações/testemunhos públicos
|
| 32 |
+
OPEN_DATA = "open_data" # Dados abertos gov.br
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@dataclass
|
| 36 |
+
class OfficialDocument:
|
| 37 |
+
"""Official government document with full traceability."""
|
| 38 |
+
|
| 39 |
+
title: str
|
| 40 |
+
document_type: str # edital, contrato, nota_fiscal, processo, etc
|
| 41 |
+
document_number: Optional[str] = None
|
| 42 |
+
url: Optional[str] = None # Link direto ao documento
|
| 43 |
+
portal_url: Optional[str] = None # Portal da Transparência
|
| 44 |
+
issue_date: Optional[datetime] = None
|
| 45 |
+
issuing_authority: Optional[str] = None
|
| 46 |
+
legal_basis: Optional[str] = None # Base legal aplicável
|
| 47 |
+
hash_verification: Optional[str] = None # Hash para verificação
|
| 48 |
+
access_date: datetime = field(default_factory=datetime.utcnow)
|
| 49 |
+
notes: Optional[str] = None
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@dataclass
|
| 53 |
+
class LegalEntity:
|
| 54 |
+
"""Complete information about a legal entity (supplier, contractor, etc)."""
|
| 55 |
+
|
| 56 |
+
name: str
|
| 57 |
+
entity_type: str # empresa, pessoa_fisica, orgao_publico
|
| 58 |
+
|
| 59 |
+
# Identificação
|
| 60 |
+
cnpj: Optional[str] = None
|
| 61 |
+
cpf: Optional[str] = None
|
| 62 |
+
company_registration: Optional[str] = None # Inscrição estadual/municipal
|
| 63 |
+
|
| 64 |
+
# Contato
|
| 65 |
+
address: Optional[str] = None
|
| 66 |
+
city: Optional[str] = None
|
| 67 |
+
state: Optional[str] = None
|
| 68 |
+
phone: Optional[str] = None
|
| 69 |
+
email: Optional[str] = None
|
| 70 |
+
|
| 71 |
+
# Links e Referências
|
| 72 |
+
receita_federal_url: Optional[str] = None
|
| 73 |
+
transparency_portal_url: Optional[str] = None
|
| 74 |
+
company_website: Optional[str] = None
|
| 75 |
+
|
| 76 |
+
# Histórico
|
| 77 |
+
foundation_date: Optional[datetime] = None
|
| 78 |
+
previous_contracts_count: int = 0
|
| 79 |
+
previous_irregularities: List[str] = field(default_factory=list)
|
| 80 |
+
total_contracted_value: Optional[float] = None
|
| 81 |
+
|
| 82 |
+
# Status Legal
|
| 83 |
+
legal_status: Optional[str] = None # ativa, suspensa, inidônea
|
| 84 |
+
sanctions: List[Dict[str, Any]] = field(default_factory=list)
|
| 85 |
+
|
| 86 |
+
# Metadata
|
| 87 |
+
last_updated: datetime = field(default_factory=datetime.utcnow)
|
| 88 |
+
data_sources: List[str] = field(default_factory=list)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@dataclass
|
| 92 |
+
class Evidence:
|
| 93 |
+
"""Piece of evidence supporting an anomaly finding."""
|
| 94 |
+
|
| 95 |
+
evidence_id: str
|
| 96 |
+
evidence_type: EvidenceType
|
| 97 |
+
title: str
|
| 98 |
+
description: str
|
| 99 |
+
|
| 100 |
+
# Conteúdo da evidência
|
| 101 |
+
data: Dict[str, Any] # Dados estruturados da evidência
|
| 102 |
+
|
| 103 |
+
# Análise
|
| 104 |
+
analysis_method: str # Como foi obtida/analisada
|
| 105 |
+
|
| 106 |
+
# Optional fields with defaults
|
| 107 |
+
raw_data: Optional[str] = None # Dados brutos se aplicável
|
| 108 |
+
confidence_score: float = 1.0 # 0-1, confiança na evidência
|
| 109 |
+
|
| 110 |
+
# Referências
|
| 111 |
+
source_documents: List[OfficialDocument] = field(default_factory=list)
|
| 112 |
+
source_urls: List[str] = field(default_factory=list)
|
| 113 |
+
|
| 114 |
+
# Comparações
|
| 115 |
+
comparison_baseline: Optional[str] = None # O que foi usado como referência
|
| 116 |
+
deviation_percentage: Optional[float] = None
|
| 117 |
+
statistical_significance: Optional[float] = None # p-value
|
| 118 |
+
|
| 119 |
+
# Metadata
|
| 120 |
+
collected_at: datetime = field(default_factory=datetime.utcnow)
|
| 121 |
+
verified: bool = False
|
| 122 |
+
verification_notes: Optional[str] = None
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
@dataclass
|
| 126 |
+
class FinancialImpact:
|
| 127 |
+
"""Detailed financial impact analysis."""
|
| 128 |
+
|
| 129 |
+
# Valores
|
| 130 |
+
contract_value: float
|
| 131 |
+
expected_value: Optional[float] = None # Valor esperado/normal
|
| 132 |
+
overcharge_amount: Optional[float] = None # Sobrepreço identificado
|
| 133 |
+
potential_savings: Optional[float] = None # Economia potencial
|
| 134 |
+
|
| 135 |
+
# Análise Comparativa
|
| 136 |
+
market_average: Optional[float] = None
|
| 137 |
+
previous_contracts_average: Optional[float] = None
|
| 138 |
+
similar_contracts: List[Dict[str, Any]] = field(default_factory=list)
|
| 139 |
+
|
| 140 |
+
# Classificação Orçamentária
|
| 141 |
+
budget_source: Optional[str] = None # Fonte de recurso
|
| 142 |
+
budget_category: Optional[str] = None
|
| 143 |
+
fiscal_year: Optional[int] = None
|
| 144 |
+
|
| 145 |
+
# Impacto
|
| 146 |
+
affected_population: Optional[int] = None # Pessoas afetadas
|
| 147 |
+
opportunity_cost: Optional[str] = None # O que poderia ser feito com o valor
|
| 148 |
+
|
| 149 |
+
# Cálculos
|
| 150 |
+
calculation_method: Optional[str] = None
|
| 151 |
+
calculation_notes: Optional[str] = None
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
@dataclass
|
| 155 |
+
class Timeline:
|
| 156 |
+
"""Detailed timeline of events related to the anomaly."""
|
| 157 |
+
|
| 158 |
+
event_date: datetime
|
| 159 |
+
event_type: str # licitacao, assinatura, pagamento, fiscalizacao, etc
|
| 160 |
+
description: str
|
| 161 |
+
relevance: str # Por que esse evento é relevante
|
| 162 |
+
|
| 163 |
+
# Documentação
|
| 164 |
+
related_documents: List[OfficialDocument] = field(default_factory=list)
|
| 165 |
+
responsible_party: Optional[str] = None
|
| 166 |
+
|
| 167 |
+
# Análise
|
| 168 |
+
suspicious_aspects: List[str] = field(default_factory=list)
|
| 169 |
+
legal_implications: Optional[str] = None
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
@dataclass
|
| 173 |
+
class LegalFramework:
|
| 174 |
+
"""Legal framework and regulatory context."""
|
| 175 |
+
|
| 176 |
+
# Legislação Aplicável
|
| 177 |
+
applicable_laws: List[str] = field(default_factory=list) # Lei 8666/93, etc
|
| 178 |
+
regulations: List[str] = field(default_factory=list)
|
| 179 |
+
jurisprudence: List[str] = field(default_factory=list) # Precedentes
|
| 180 |
+
|
| 181 |
+
# Órgãos Competentes
|
| 182 |
+
oversight_bodies: List[str] = field(default_factory=list) # TCU, CGU, MPF
|
| 183 |
+
jurisdiction: Optional[str] = None # Federal, estadual, municipal
|
| 184 |
+
|
| 185 |
+
# Procedimentos
|
| 186 |
+
required_procedures: List[str] = field(default_factory=list)
|
| 187 |
+
procedures_followed: List[str] = field(default_factory=list)
|
| 188 |
+
procedures_violated: List[str] = field(default_factory=list)
|
| 189 |
+
|
| 190 |
+
# Penalidades Possíveis
|
| 191 |
+
possible_sanctions: List[str] = field(default_factory=list)
|
| 192 |
+
responsible_parties: List[str] = field(default_factory=list)
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
@dataclass
|
| 196 |
+
class RecommendedAction:
|
| 197 |
+
"""Recommended action with full justification."""
|
| 198 |
+
|
| 199 |
+
action_type: str # investigacao, auditoria, denuncia, recurso
|
| 200 |
+
priority: str # urgente, alta, media, baixa
|
| 201 |
+
title: str
|
| 202 |
+
description: str
|
| 203 |
+
|
| 204 |
+
# Justificativa
|
| 205 |
+
rationale: str # Por que essa ação é recomendada
|
| 206 |
+
expected_outcome: str # Resultado esperado
|
| 207 |
+
|
| 208 |
+
# Execução
|
| 209 |
+
responsible_body: Optional[str] = None # Quem deve executar
|
| 210 |
+
contact_info: Optional[str] = None
|
| 211 |
+
submission_url: Optional[str] = None
|
| 212 |
+
required_documents: List[str] = field(default_factory=list)
|
| 213 |
+
|
| 214 |
+
# Prazos
|
| 215 |
+
recommended_deadline: Optional[datetime] = None
|
| 216 |
+
legal_deadline: Optional[datetime] = None
|
| 217 |
+
|
| 218 |
+
# Referências
|
| 219 |
+
legal_basis: List[str] = field(default_factory=list)
|
| 220 |
+
similar_cases: List[str] = field(default_factory=list)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
@dataclass
|
| 224 |
+
class ForensicAnomalyResult:
|
| 225 |
+
"""Ultra-detailed anomaly result with full forensic evidence."""
|
| 226 |
+
|
| 227 |
+
# Identificação
|
| 228 |
+
anomaly_id: str
|
| 229 |
+
anomaly_type: str
|
| 230 |
+
severity: AnomalySeverity
|
| 231 |
+
|
| 232 |
+
# Título e Descrição Executiva
|
| 233 |
+
title: str
|
| 234 |
+
executive_summary: str # Resumo executivo (2-3 parágrafos)
|
| 235 |
+
detailed_description: str # Descrição completa e técnica
|
| 236 |
+
|
| 237 |
+
# O QUE foi detectado
|
| 238 |
+
what_happened: str # Descrição clara do que aconteceu
|
| 239 |
+
|
| 240 |
+
# COMO foi detectado
|
| 241 |
+
detection_method: str # Como o sistema detectou
|
| 242 |
+
analysis_methodology: str # Metodologia de análise aplicada
|
| 243 |
+
|
| 244 |
+
# POR QUE é suspeito/irregular
|
| 245 |
+
why_suspicious: str # Explicação clara das irregularidades
|
| 246 |
+
legal_violations: List[str] = field(default_factory=list)
|
| 247 |
+
|
| 248 |
+
# Confiança e Qualidade
|
| 249 |
+
confidence_score: float = 0.0 # 0-1
|
| 250 |
+
data_quality_score: float = 0.0 # 0-1
|
| 251 |
+
completeness_score: float = 0.0 # 0-1
|
| 252 |
+
|
| 253 |
+
# ENTIDADES ENVOLVIDAS
|
| 254 |
+
involved_entities: List[LegalEntity] = field(default_factory=list)
|
| 255 |
+
|
| 256 |
+
# DOCUMENTAÇÃO E EVIDÊNCIAS
|
| 257 |
+
official_documents: List[OfficialDocument] = field(default_factory=list)
|
| 258 |
+
evidence: List[Evidence] = field(default_factory=list)
|
| 259 |
+
|
| 260 |
+
# ANÁLISE FINANCEIRA
|
| 261 |
+
financial_impact: Optional[FinancialImpact] = None
|
| 262 |
+
|
| 263 |
+
# CRONOLOGIA
|
| 264 |
+
timeline: List[Timeline] = field(default_factory=list)
|
| 265 |
+
|
| 266 |
+
# CONTEXTO LEGAL
|
| 267 |
+
legal_framework: Optional[LegalFramework] = None
|
| 268 |
+
|
| 269 |
+
# COMPARAÇÕES E BENCHMARK
|
| 270 |
+
similar_cases: List[Dict[str, Any]] = field(default_factory=list)
|
| 271 |
+
statistical_comparison: Optional[Dict[str, Any]] = None
|
| 272 |
+
|
| 273 |
+
# AÇÕES RECOMENDADAS
|
| 274 |
+
recommended_actions: List[RecommendedAction] = field(default_factory=list)
|
| 275 |
+
|
| 276 |
+
# FONTES E RASTREABILIDADE
|
| 277 |
+
data_sources: List[str] = field(default_factory=list)
|
| 278 |
+
api_endpoints_used: List[str] = field(default_factory=list)
|
| 279 |
+
external_references: List[str] = field(default_factory=list)
|
| 280 |
+
|
| 281 |
+
# VISUALIZAÇÕES
|
| 282 |
+
charts: List[Dict[str, Any]] = field(default_factory=list)
|
| 283 |
+
visualizations_urls: List[str] = field(default_factory=list)
|
| 284 |
+
|
| 285 |
+
# METADATA
|
| 286 |
+
created_at: datetime = field(default_factory=datetime.utcnow)
|
| 287 |
+
analyzed_by: str = "Cidadão.AI"
|
| 288 |
+
analysis_version: str = "1.0"
|
| 289 |
+
last_updated: datetime = field(default_factory=datetime.utcnow)
|
| 290 |
+
|
| 291 |
+
# Para Auditoria
|
| 292 |
+
reproducible: bool = True
|
| 293 |
+
reproducibility_notes: Optional[str] = None
|
| 294 |
+
peer_reviewed: bool = False
|
| 295 |
+
review_notes: Optional[str] = None
|
| 296 |
+
|
| 297 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 298 |
+
"""Convert to dictionary for JSON serialization."""
|
| 299 |
+
return {
|
| 300 |
+
"anomaly_id": self.anomaly_id,
|
| 301 |
+
"anomaly_type": self.anomaly_type,
|
| 302 |
+
"severity": self.severity.value,
|
| 303 |
+
"title": self.title,
|
| 304 |
+
"executive_summary": self.executive_summary,
|
| 305 |
+
"detailed_description": self.detailed_description,
|
| 306 |
+
"what_happened": self.what_happened,
|
| 307 |
+
"detection_method": self.detection_method,
|
| 308 |
+
"analysis_methodology": self.analysis_methodology,
|
| 309 |
+
"why_suspicious": self.why_suspicious,
|
| 310 |
+
"legal_violations": self.legal_violations,
|
| 311 |
+
"confidence_score": self.confidence_score,
|
| 312 |
+
"data_quality_score": self.data_quality_score,
|
| 313 |
+
"completeness_score": self.completeness_score,
|
| 314 |
+
"involved_entities": [
|
| 315 |
+
{
|
| 316 |
+
"name": e.name,
|
| 317 |
+
"type": e.entity_type,
|
| 318 |
+
"cnpj": e.cnpj,
|
| 319 |
+
"cpf": e.cpf,
|
| 320 |
+
"address": e.address,
|
| 321 |
+
"city": e.city,
|
| 322 |
+
"state": e.state,
|
| 323 |
+
"transparency_portal_url": e.transparency_portal_url,
|
| 324 |
+
"previous_contracts_count": e.previous_contracts_count,
|
| 325 |
+
"legal_status": e.legal_status,
|
| 326 |
+
"sanctions": e.sanctions,
|
| 327 |
+
}
|
| 328 |
+
for e in self.involved_entities
|
| 329 |
+
],
|
| 330 |
+
"official_documents": [
|
| 331 |
+
{
|
| 332 |
+
"title": d.title,
|
| 333 |
+
"type": d.document_type,
|
| 334 |
+
"number": d.document_number,
|
| 335 |
+
"url": d.url,
|
| 336 |
+
"portal_url": d.portal_url,
|
| 337 |
+
"issue_date": d.issue_date.isoformat() if d.issue_date else None,
|
| 338 |
+
"issuing_authority": d.issuing_authority,
|
| 339 |
+
"legal_basis": d.legal_basis,
|
| 340 |
+
}
|
| 341 |
+
for d in self.official_documents
|
| 342 |
+
],
|
| 343 |
+
"evidence": [
|
| 344 |
+
{
|
| 345 |
+
"id": e.evidence_id,
|
| 346 |
+
"type": e.evidence_type.value,
|
| 347 |
+
"title": e.title,
|
| 348 |
+
"description": e.description,
|
| 349 |
+
"data": e.data,
|
| 350 |
+
"analysis_method": e.analysis_method,
|
| 351 |
+
"confidence_score": e.confidence_score,
|
| 352 |
+
"source_urls": e.source_urls,
|
| 353 |
+
"deviation_percentage": e.deviation_percentage,
|
| 354 |
+
"statistical_significance": e.statistical_significance,
|
| 355 |
+
}
|
| 356 |
+
for e in self.evidence
|
| 357 |
+
],
|
| 358 |
+
"financial_impact": {
|
| 359 |
+
"contract_value": self.financial_impact.contract_value,
|
| 360 |
+
"expected_value": self.financial_impact.expected_value,
|
| 361 |
+
"overcharge_amount": self.financial_impact.overcharge_amount,
|
| 362 |
+
"potential_savings": self.financial_impact.potential_savings,
|
| 363 |
+
"market_average": self.financial_impact.market_average,
|
| 364 |
+
"similar_contracts": self.financial_impact.similar_contracts,
|
| 365 |
+
"opportunity_cost": self.financial_impact.opportunity_cost,
|
| 366 |
+
} if self.financial_impact else None,
|
| 367 |
+
"timeline": [
|
| 368 |
+
{
|
| 369 |
+
"date": t.event_date.isoformat(),
|
| 370 |
+
"type": t.event_type,
|
| 371 |
+
"description": t.description,
|
| 372 |
+
"relevance": t.relevance,
|
| 373 |
+
"suspicious_aspects": t.suspicious_aspects,
|
| 374 |
+
}
|
| 375 |
+
for t in self.timeline
|
| 376 |
+
],
|
| 377 |
+
"legal_framework": {
|
| 378 |
+
"applicable_laws": self.legal_framework.applicable_laws,
|
| 379 |
+
"oversight_bodies": self.legal_framework.oversight_bodies,
|
| 380 |
+
"procedures_violated": self.legal_framework.procedures_violated,
|
| 381 |
+
"possible_sanctions": self.legal_framework.possible_sanctions,
|
| 382 |
+
} if self.legal_framework else None,
|
| 383 |
+
"recommended_actions": [
|
| 384 |
+
{
|
| 385 |
+
"type": a.action_type,
|
| 386 |
+
"priority": a.priority,
|
| 387 |
+
"title": a.title,
|
| 388 |
+
"description": a.description,
|
| 389 |
+
"rationale": a.rationale,
|
| 390 |
+
"expected_outcome": a.expected_outcome,
|
| 391 |
+
"responsible_body": a.responsible_body,
|
| 392 |
+
"submission_url": a.submission_url,
|
| 393 |
+
"legal_basis": a.legal_basis,
|
| 394 |
+
}
|
| 395 |
+
for a in self.recommended_actions
|
| 396 |
+
],
|
| 397 |
+
"data_sources": self.data_sources,
|
| 398 |
+
"created_at": self.created_at.isoformat(),
|
| 399 |
+
"analyzed_by": self.analyzed_by,
|
| 400 |
+
"reproducible": self.reproducible,
|
| 401 |
+
}
|
|
@@ -0,0 +1,668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Forensic Data Enrichment Service.
|
| 3 |
+
|
| 4 |
+
This service enriches investigation results with detailed evidence, documentation,
|
| 5 |
+
legal references, and actionable intelligence.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import List, Dict, Any, Optional
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
from uuid import uuid4
|
| 11 |
+
|
| 12 |
+
from src.core import get_logger
|
| 13 |
+
from src.models.forensic_investigation import (
|
| 14 |
+
ForensicAnomalyResult,
|
| 15 |
+
AnomalySeverity,
|
| 16 |
+
OfficialDocument,
|
| 17 |
+
LegalEntity,
|
| 18 |
+
Evidence,
|
| 19 |
+
EvidenceType,
|
| 20 |
+
FinancialImpact,
|
| 21 |
+
Timeline,
|
| 22 |
+
LegalFramework,
|
| 23 |
+
RecommendedAction,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
logger = get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class ForensicEnrichmentService:
|
| 30 |
+
"""
|
| 31 |
+
Service for enriching anomaly results with comprehensive forensic data.
|
| 32 |
+
|
| 33 |
+
This is the SECRET SAUCE that makes Cidadão.AI investigations superior:
|
| 34 |
+
- Complete evidence chain
|
| 35 |
+
- Full documentation links
|
| 36 |
+
- Legal framework analysis
|
| 37 |
+
- Actionable recommendations with contact info
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
def __init__(self):
|
| 41 |
+
"""Initialize forensic enrichment service."""
|
| 42 |
+
self.transparency_portal_base = "https://portaldatransparencia.gov.br"
|
| 43 |
+
self.receita_federal_base = "https://solucoes.receita.fazenda.gov.br"
|
| 44 |
+
|
| 45 |
+
async def enrich_anomaly(
|
| 46 |
+
self,
|
| 47 |
+
basic_anomaly: Dict[str, Any],
|
| 48 |
+
contract_data: Dict[str, Any],
|
| 49 |
+
comparative_data: Optional[List[Dict[str, Any]]] = None,
|
| 50 |
+
) -> ForensicAnomalyResult:
|
| 51 |
+
"""
|
| 52 |
+
Transform a basic anomaly into a comprehensive forensic report.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
basic_anomaly: Basic anomaly data from detection
|
| 56 |
+
contract_data: Full contract data from Portal da Transparência
|
| 57 |
+
comparative_data: Similar contracts for comparison
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
Comprehensive forensic anomaly result
|
| 61 |
+
"""
|
| 62 |
+
logger.info(f"Starting forensic enrichment for anomaly type: {basic_anomaly.get('type')}")
|
| 63 |
+
|
| 64 |
+
# Generate unique ID
|
| 65 |
+
anomaly_id = str(uuid4())
|
| 66 |
+
|
| 67 |
+
# Build executive summary
|
| 68 |
+
executive_summary = self._build_executive_summary(basic_anomaly, contract_data)
|
| 69 |
+
|
| 70 |
+
# Extract involved entities with full details
|
| 71 |
+
entities = await self._extract_entities(contract_data)
|
| 72 |
+
|
| 73 |
+
# Generate official documents list with links
|
| 74 |
+
documents = await self._generate_document_list(contract_data)
|
| 75 |
+
|
| 76 |
+
# Collect and analyze evidence
|
| 77 |
+
evidence = await self._collect_evidence(
|
| 78 |
+
basic_anomaly,
|
| 79 |
+
contract_data,
|
| 80 |
+
comparative_data or []
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Calculate financial impact
|
| 84 |
+
financial_impact = await self._analyze_financial_impact(
|
| 85 |
+
contract_data,
|
| 86 |
+
comparative_data or []
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Build timeline of events
|
| 90 |
+
timeline = await self._build_timeline(contract_data)
|
| 91 |
+
|
| 92 |
+
# Determine legal framework
|
| 93 |
+
legal_framework = await self._determine_legal_framework(
|
| 94 |
+
contract_data,
|
| 95 |
+
basic_anomaly.get('type')
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Generate actionable recommendations
|
| 99 |
+
actions = await self._generate_recommendations(
|
| 100 |
+
basic_anomaly,
|
| 101 |
+
contract_data,
|
| 102 |
+
financial_impact
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Create comprehensive result
|
| 106 |
+
forensic_result = ForensicAnomalyResult(
|
| 107 |
+
anomaly_id=anomaly_id,
|
| 108 |
+
anomaly_type=basic_anomaly.get('type', 'unknown'),
|
| 109 |
+
severity=self._map_severity(basic_anomaly.get('severity', 0.5)),
|
| 110 |
+
title=self._generate_title(basic_anomaly, contract_data),
|
| 111 |
+
executive_summary=executive_summary,
|
| 112 |
+
detailed_description=self._build_detailed_description(
|
| 113 |
+
basic_anomaly,
|
| 114 |
+
contract_data,
|
| 115 |
+
evidence
|
| 116 |
+
),
|
| 117 |
+
what_happened=self._describe_what_happened(basic_anomaly, contract_data),
|
| 118 |
+
detection_method=self._describe_detection_method(basic_anomaly),
|
| 119 |
+
analysis_methodology=self._describe_methodology(basic_anomaly),
|
| 120 |
+
why_suspicious=self._explain_why_suspicious(basic_anomaly, contract_data),
|
| 121 |
+
legal_violations=self._identify_legal_violations(basic_anomaly, contract_data),
|
| 122 |
+
confidence_score=basic_anomaly.get('confidence', 0.0),
|
| 123 |
+
data_quality_score=self._assess_data_quality(contract_data),
|
| 124 |
+
completeness_score=self._assess_completeness(contract_data),
|
| 125 |
+
involved_entities=entities,
|
| 126 |
+
official_documents=documents,
|
| 127 |
+
evidence=evidence,
|
| 128 |
+
financial_impact=financial_impact,
|
| 129 |
+
timeline=timeline,
|
| 130 |
+
legal_framework=legal_framework,
|
| 131 |
+
recommended_actions=actions,
|
| 132 |
+
data_sources=self._list_data_sources(contract_data),
|
| 133 |
+
api_endpoints_used=self._list_api_endpoints(contract_data),
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
logger.info(
|
| 137 |
+
f"Forensic enrichment completed for anomaly {anomaly_id}",
|
| 138 |
+
evidence_count=len(evidence),
|
| 139 |
+
documents_count=len(documents),
|
| 140 |
+
entities_count=len(entities)
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
return forensic_result
|
| 144 |
+
|
| 145 |
+
def _build_executive_summary(
|
| 146 |
+
self,
|
| 147 |
+
anomaly: Dict[str, Any],
|
| 148 |
+
contract: Dict[str, Any]
|
| 149 |
+
) -> str:
|
| 150 |
+
"""Build executive summary (2-3 paragraphs)."""
|
| 151 |
+
anomaly_type = anomaly.get('type', 'unknown')
|
| 152 |
+
confidence = anomaly.get('confidence', 0) * 100
|
| 153 |
+
|
| 154 |
+
supplier = contract.get('fornecedor', {}).get('nome', 'Fornecedor não identificado')
|
| 155 |
+
value = contract.get('valorInicial', 0)
|
| 156 |
+
|
| 157 |
+
summary = f"""
|
| 158 |
+
**RESUMO EXECUTIVO**
|
| 159 |
+
|
| 160 |
+
Foi identificada uma anomalia do tipo "{anomaly_type}" com {confidence:.0f}% de confiança nesta análise.
|
| 161 |
+
O contrato em questão, firmado com {supplier}, apresenta indícios de irregularidade que merecem investigação detalhada.
|
| 162 |
+
|
| 163 |
+
O valor contratado de R$ {value:,.2f} apresenta desvios significativos em relação aos padrões de mercado
|
| 164 |
+
e contratos similares identificados em nossa base de dados. A metodologia aplicada combina análise estatística,
|
| 165 |
+
comparação com dados históricos e verificação de conformidade legal.
|
| 166 |
+
|
| 167 |
+
Esta investigação fornece evidências documentadas, referências legais completas e recomendações de ações específicas
|
| 168 |
+
para os órgãos competentes. Todas as informações são rastreáveis e verificáveis através dos links oficiais fornecidos.
|
| 169 |
+
"""
|
| 170 |
+
return summary.strip()
|
| 171 |
+
|
| 172 |
+
async def _extract_entities(
|
| 173 |
+
self,
|
| 174 |
+
contract: Dict[str, Any]
|
| 175 |
+
) -> List[LegalEntity]:
|
| 176 |
+
"""Extract all involved entities with complete data."""
|
| 177 |
+
entities = []
|
| 178 |
+
|
| 179 |
+
# Fornecedor
|
| 180 |
+
fornecedor = contract.get('fornecedor', {})
|
| 181 |
+
if fornecedor:
|
| 182 |
+
cnpj = fornecedor.get('cnpjFormatado') or fornecedor.get('cnpj')
|
| 183 |
+
entity = LegalEntity(
|
| 184 |
+
name=fornecedor.get('nome', 'Nome não disponível'),
|
| 185 |
+
entity_type="empresa",
|
| 186 |
+
cnpj=cnpj,
|
| 187 |
+
transparency_portal_url=self._build_supplier_url(cnpj) if cnpj else None,
|
| 188 |
+
receita_federal_url=self._build_receita_url(cnpj) if cnpj else None,
|
| 189 |
+
)
|
| 190 |
+
entities.append(entity)
|
| 191 |
+
|
| 192 |
+
# Órgão Contratante
|
| 193 |
+
orgao = contract.get('orgaoContratante', {}) or contract.get('unidadeGestora', {})
|
| 194 |
+
if orgao:
|
| 195 |
+
entity = LegalEntity(
|
| 196 |
+
name=orgao.get('nome', 'Órgão não identificado'),
|
| 197 |
+
entity_type="orgao_publico",
|
| 198 |
+
company_registration=orgao.get('codigo'),
|
| 199 |
+
transparency_portal_url=self._build_agency_url(orgao.get('codigo')),
|
| 200 |
+
)
|
| 201 |
+
entities.append(entity)
|
| 202 |
+
|
| 203 |
+
return entities
|
| 204 |
+
|
| 205 |
+
async def _generate_document_list(
|
| 206 |
+
self,
|
| 207 |
+
contract: Dict[str, Any]
|
| 208 |
+
) -> List[OfficialDocument]:
|
| 209 |
+
"""Generate list of official documents with direct links."""
|
| 210 |
+
documents = []
|
| 211 |
+
|
| 212 |
+
# Contrato principal
|
| 213 |
+
contract_number = contract.get('numeroContrato') or contract.get('numero')
|
| 214 |
+
if contract_number:
|
| 215 |
+
doc = OfficialDocument(
|
| 216 |
+
title=f"Contrato nº {contract_number}",
|
| 217 |
+
document_type="contrato",
|
| 218 |
+
document_number=contract_number,
|
| 219 |
+
portal_url=self._build_contract_url(contract.get('id')),
|
| 220 |
+
issue_date=self._parse_date(contract.get('dataAssinatura')),
|
| 221 |
+
issuing_authority=contract.get('orgaoContratante', {}).get('nome'),
|
| 222 |
+
legal_basis="Lei 8.666/93 - Licitações e Contratos",
|
| 223 |
+
)
|
| 224 |
+
documents.append(doc)
|
| 225 |
+
|
| 226 |
+
# Processo Licitatório
|
| 227 |
+
if contract.get('numeroProcesso'):
|
| 228 |
+
doc = OfficialDocument(
|
| 229 |
+
title=f"Processo Licitatório nº {contract['numeroProcesso']}",
|
| 230 |
+
document_type="processo",
|
| 231 |
+
document_number=contract['numeroProcesso'],
|
| 232 |
+
legal_basis="Lei 8.666/93, Art. 38",
|
| 233 |
+
)
|
| 234 |
+
documents.append(doc)
|
| 235 |
+
|
| 236 |
+
# Edital (se disponível)
|
| 237 |
+
if contract.get('modalidadeCompra'):
|
| 238 |
+
doc = OfficialDocument(
|
| 239 |
+
title=f"Edital - {contract['modalidadeCompra']}",
|
| 240 |
+
document_type="edital",
|
| 241 |
+
legal_basis="Lei 8.666/93, Art. 40",
|
| 242 |
+
)
|
| 243 |
+
documents.append(doc)
|
| 244 |
+
|
| 245 |
+
return documents
|
| 246 |
+
|
| 247 |
+
async def _collect_evidence(
|
| 248 |
+
self,
|
| 249 |
+
anomaly: Dict[str, Any],
|
| 250 |
+
contract: Dict[str, Any],
|
| 251 |
+
comparative_contracts: List[Dict[str, Any]]
|
| 252 |
+
) -> List[Evidence]:
|
| 253 |
+
"""Collect and document all evidence."""
|
| 254 |
+
evidence_list = []
|
| 255 |
+
|
| 256 |
+
# Evidência 1: Análise Estatística
|
| 257 |
+
if anomaly.get('type') == 'price_deviation':
|
| 258 |
+
evidence_list.append(Evidence(
|
| 259 |
+
evidence_id=str(uuid4()),
|
| 260 |
+
evidence_type=EvidenceType.STATISTICAL,
|
| 261 |
+
title="Análise Estatística de Preços",
|
| 262 |
+
description=f"Análise comparativa revela desvio de {anomaly.get('deviation_percentage', 0):.1f}% em relação à média de mercado",
|
| 263 |
+
data={
|
| 264 |
+
"contract_value": contract.get('valorInicial'),
|
| 265 |
+
"market_average": anomaly.get('market_average'),
|
| 266 |
+
"standard_deviation": anomaly.get('std_deviation'),
|
| 267 |
+
"z_score": anomaly.get('z_score'),
|
| 268 |
+
},
|
| 269 |
+
analysis_method="Análise estatística usando z-score e desvio padrão",
|
| 270 |
+
confidence_score=anomaly.get('confidence', 0.8),
|
| 271 |
+
deviation_percentage=anomaly.get('deviation_percentage'),
|
| 272 |
+
statistical_significance=anomaly.get('p_value'),
|
| 273 |
+
))
|
| 274 |
+
|
| 275 |
+
# Evidência 2: Comparação com Contratos Similares
|
| 276 |
+
if comparative_contracts:
|
| 277 |
+
evidence_list.append(Evidence(
|
| 278 |
+
evidence_id=str(uuid4()),
|
| 279 |
+
evidence_type=EvidenceType.COMPARATIVE,
|
| 280 |
+
title=f"Comparação com {len(comparative_contracts)} Contratos Similares",
|
| 281 |
+
description="Contratos similares identificados com valores significativamente inferiores",
|
| 282 |
+
data={
|
| 283 |
+
"similar_contracts_count": len(comparative_contracts),
|
| 284 |
+
"similar_contracts": [
|
| 285 |
+
{
|
| 286 |
+
"id": c.get('id'),
|
| 287 |
+
"value": c.get('valorInicial'),
|
| 288 |
+
"supplier": c.get('fornecedor', {}).get('nome'),
|
| 289 |
+
"url": self._build_contract_url(c.get('id')),
|
| 290 |
+
}
|
| 291 |
+
for c in comparative_contracts[:5] # Top 5
|
| 292 |
+
],
|
| 293 |
+
},
|
| 294 |
+
analysis_method="Busca e comparação de contratos com objeto similar",
|
| 295 |
+
confidence_score=0.9,
|
| 296 |
+
source_urls=[
|
| 297 |
+
self._build_contract_url(c.get('id'))
|
| 298 |
+
for c in comparative_contracts[:5]
|
| 299 |
+
],
|
| 300 |
+
))
|
| 301 |
+
|
| 302 |
+
# Evidência 3: Análise Temporal
|
| 303 |
+
evidence_list.append(Evidence(
|
| 304 |
+
evidence_id=str(uuid4()),
|
| 305 |
+
evidence_type=EvidenceType.TEMPORAL,
|
| 306 |
+
title="Análise Temporal do Contrato",
|
| 307 |
+
description="Análise da linha do tempo de eventos relevantes",
|
| 308 |
+
data={
|
| 309 |
+
"data_assinatura": contract.get('dataAssinatura'),
|
| 310 |
+
"data_inicio_vigencia": contract.get('dataInicioVigencia'),
|
| 311 |
+
"data_fim_vigencia": contract.get('dataFimVigencia'),
|
| 312 |
+
},
|
| 313 |
+
analysis_method="Verificação de prazos e sequência de eventos",
|
| 314 |
+
confidence_score=1.0,
|
| 315 |
+
))
|
| 316 |
+
|
| 317 |
+
return evidence_list
|
| 318 |
+
|
| 319 |
+
async def _analyze_financial_impact(
|
| 320 |
+
self,
|
| 321 |
+
contract: Dict[str, Any],
|
| 322 |
+
comparative_contracts: List[Dict[str, Any]]
|
| 323 |
+
) -> FinancialImpact:
|
| 324 |
+
"""Analyze detailed financial impact."""
|
| 325 |
+
contract_value = contract.get('valorInicial', 0)
|
| 326 |
+
|
| 327 |
+
# Calculate market average from similar contracts
|
| 328 |
+
market_avg = None
|
| 329 |
+
if comparative_contracts:
|
| 330 |
+
values = [c.get('valorInicial', 0) for c in comparative_contracts if c.get('valorInicial')]
|
| 331 |
+
if values:
|
| 332 |
+
market_avg = sum(values) / len(values)
|
| 333 |
+
|
| 334 |
+
# Calculate overcharge
|
| 335 |
+
overcharge = None
|
| 336 |
+
if market_avg and contract_value > market_avg:
|
| 337 |
+
overcharge = contract_value - market_avg
|
| 338 |
+
|
| 339 |
+
return FinancialImpact(
|
| 340 |
+
contract_value=contract_value,
|
| 341 |
+
expected_value=market_avg,
|
| 342 |
+
overcharge_amount=overcharge,
|
| 343 |
+
potential_savings=overcharge,
|
| 344 |
+
market_average=market_avg,
|
| 345 |
+
similar_contracts=[
|
| 346 |
+
{
|
| 347 |
+
"id": c.get('id'),
|
| 348 |
+
"value": c.get('valorInicial'),
|
| 349 |
+
"supplier": c.get('fornecedor', {}).get('nome'),
|
| 350 |
+
}
|
| 351 |
+
for c in comparative_contracts[:10]
|
| 352 |
+
],
|
| 353 |
+
opportunity_cost=self._calculate_opportunity_cost(overcharge) if overcharge else None,
|
| 354 |
+
calculation_method="Média aritmética de contratos similares identificados no Portal da Transparência",
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
async def _build_timeline(
|
| 358 |
+
self,
|
| 359 |
+
contract: Dict[str, Any]
|
| 360 |
+
) -> List[Timeline]:
|
| 361 |
+
"""Build detailed timeline of events."""
|
| 362 |
+
timeline = []
|
| 363 |
+
|
| 364 |
+
# Assinatura
|
| 365 |
+
if contract.get('dataAssinatura'):
|
| 366 |
+
timeline.append(Timeline(
|
| 367 |
+
event_date=self._parse_date(contract['dataAssinatura']),
|
| 368 |
+
event_type="assinatura",
|
| 369 |
+
description="Assinatura do contrato",
|
| 370 |
+
relevance="Data oficial de formalização do vínculo contratual",
|
| 371 |
+
))
|
| 372 |
+
|
| 373 |
+
# Início de vigência
|
| 374 |
+
if contract.get('dataInicioVigencia'):
|
| 375 |
+
timeline.append(Timeline(
|
| 376 |
+
event_date=self._parse_date(contract['dataInicioVigencia']),
|
| 377 |
+
event_type="inicio_vigencia",
|
| 378 |
+
description="Início da vigência contratual",
|
| 379 |
+
relevance="Data a partir da qual as obrigações contratuais começam",
|
| 380 |
+
))
|
| 381 |
+
|
| 382 |
+
# Fim de vigência
|
| 383 |
+
if contract.get('dataFimVigencia'):
|
| 384 |
+
timeline.append(Timeline(
|
| 385 |
+
event_date=self._parse_date(contract['dataFimVigencia']),
|
| 386 |
+
event_type="fim_vigencia",
|
| 387 |
+
description="Fim da vigência contratual",
|
| 388 |
+
relevance="Data limite para execução do objeto contratual",
|
| 389 |
+
))
|
| 390 |
+
|
| 391 |
+
return sorted(timeline, key=lambda x: x.event_date)
|
| 392 |
+
|
| 393 |
+
async def _determine_legal_framework(
|
| 394 |
+
self,
|
| 395 |
+
contract: Dict[str, Any],
|
| 396 |
+
anomaly_type: str
|
| 397 |
+
) -> LegalFramework:
|
| 398 |
+
"""Determine applicable legal framework."""
|
| 399 |
+
return LegalFramework(
|
| 400 |
+
applicable_laws=[
|
| 401 |
+
"Lei nº 8.666/1993 - Licitações e Contratos Administrativos",
|
| 402 |
+
"Lei nº 14.133/2021 - Nova Lei de Licitações",
|
| 403 |
+
"Lei nº 8.429/1992 - Lei de Improbidade Administrativa",
|
| 404 |
+
"Decreto nº 10.024/2019 - Pregão Eletrônico",
|
| 405 |
+
],
|
| 406 |
+
regulations=[
|
| 407 |
+
"Instrução Normativa SEGES/ME nº 65/2021",
|
| 408 |
+
"Acórdão TCU nº 2.622/2013",
|
| 409 |
+
],
|
| 410 |
+
oversight_bodies=[
|
| 411 |
+
"Tribunal de Contas da União (TCU)",
|
| 412 |
+
"Controladoria-Geral da União (CGU)",
|
| 413 |
+
"Ministério Público Federal (MPF)",
|
| 414 |
+
"Polícia Federal",
|
| 415 |
+
],
|
| 416 |
+
procedures_violated=self._identify_procedure_violations(anomaly_type),
|
| 417 |
+
possible_sanctions=[
|
| 418 |
+
"Multa contratual",
|
| 419 |
+
"Rescisão unilateral do contrato",
|
| 420 |
+
"Declaração de inidoneidade do fornecedor",
|
| 421 |
+
"Responsabilização por improbidade administrativa",
|
| 422 |
+
"Ação de ressarcimento ao erário",
|
| 423 |
+
],
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
async def _generate_recommendations(
|
| 427 |
+
self,
|
| 428 |
+
anomaly: Dict[str, Any],
|
| 429 |
+
contract: Dict[str, Any],
|
| 430 |
+
financial_impact: FinancialImpact
|
| 431 |
+
) -> List[RecommendedAction]:
|
| 432 |
+
"""Generate detailed actionable recommendations."""
|
| 433 |
+
actions = []
|
| 434 |
+
|
| 435 |
+
# Ação 1: Denúncia ao TCU
|
| 436 |
+
actions.append(RecommendedAction(
|
| 437 |
+
action_type="denuncia",
|
| 438 |
+
priority="alta",
|
| 439 |
+
title="Denúncia ao Tribunal de Contas da União (TCU)",
|
| 440 |
+
description="Apresentar denúncia formal ao TCU sobre possível irregularidade",
|
| 441 |
+
rationale="O TCU tem competência constitucional para fiscalizar contratos públicos e aplicar sanções",
|
| 442 |
+
expected_outcome="Instauração de processo de fiscalização e auditoria do contrato",
|
| 443 |
+
responsible_body="Tribunal de Contas da União (TCU)",
|
| 444 |
+
contact_info="Ouvidoria TCU: 0800 644 1500 | [email protected]",
|
| 445 |
+
submission_url="https://portal.tcu.gov.br/ouvidoria/denuncias/",
|
| 446 |
+
legal_basis=[
|
| 447 |
+
"Constituição Federal, Art. 71",
|
| 448 |
+
"Lei nº 8.443/1992 - Lei Orgânica do TCU",
|
| 449 |
+
],
|
| 450 |
+
))
|
| 451 |
+
|
| 452 |
+
# Ação 2: Representação à CGU
|
| 453 |
+
actions.append(RecommendedAction(
|
| 454 |
+
action_type="representacao",
|
| 455 |
+
priority="alta",
|
| 456 |
+
title="Representação à Controladoria-Geral da União (CGU)",
|
| 457 |
+
description="Comunicar indícios de irregularidade à CGU para apuração",
|
| 458 |
+
rationale="A CGU é responsável por controle interno e combate à corrupção no âmbito federal",
|
| 459 |
+
expected_outcome="Abertura de procedimento administrativo de apuração",
|
| 460 |
+
responsible_body="Controladoria-Geral da União (CGU)",
|
| 461 |
+
contact_info="Fala.BR: https://www.gov.br/cgu/pt-br/canais_atendimento/fala-br",
|
| 462 |
+
submission_url="https://sistema.ouvidorias.gov.br",
|
| 463 |
+
legal_basis=[
|
| 464 |
+
"Lei nº 10.683/2003, Art. 24",
|
| 465 |
+
"Decreto nº 11.529/2023",
|
| 466 |
+
],
|
| 467 |
+
))
|
| 468 |
+
|
| 469 |
+
# Ação 3: Notificação ao Órgão Contratante
|
| 470 |
+
orgao = contract.get('orgaoContratante', {})
|
| 471 |
+
if orgao:
|
| 472 |
+
actions.append(RecommendedAction(
|
| 473 |
+
action_type="notificacao",
|
| 474 |
+
priority="media",
|
| 475 |
+
title=f"Notificação ao Órgão Contratante - {orgao.get('nome')}",
|
| 476 |
+
description="Comunicar formalmente ao órgão sobre as irregularidades identificadas",
|
| 477 |
+
rationale="O órgão contratante pode tomar medidas administrativas imediatas",
|
| 478 |
+
expected_outcome="Revisão do contrato e possível rescisão",
|
| 479 |
+
responsible_body=orgao.get('nome'),
|
| 480 |
+
legal_basis=[
|
| 481 |
+
"Lei nº 8.666/1993, Art. 78",
|
| 482 |
+
"Lei nº 8.666/1993, Art. 87",
|
| 483 |
+
],
|
| 484 |
+
))
|
| 485 |
+
|
| 486 |
+
# Ação 4: Representação ao MPF (se grave)
|
| 487 |
+
if financial_impact.overcharge_amount and financial_impact.overcharge_amount > 100000:
|
| 488 |
+
actions.append(RecommendedAction(
|
| 489 |
+
action_type="representacao",
|
| 490 |
+
priority="urgente",
|
| 491 |
+
title="Representação ao Ministério Público Federal (MPF)",
|
| 492 |
+
description="Comunicar possível lesão ao erário de valor significativo",
|
| 493 |
+
rationale="O MPF tem legitimidade para propor ação civil pública e ação de improbidade",
|
| 494 |
+
expected_outcome="Investigação criminal e/ou ação civil pública",
|
| 495 |
+
responsible_body="Ministério Público Federal",
|
| 496 |
+
contact_info="Representação Criminal: http://www.mpf.mp.br/para-o-cidadao/sac",
|
| 497 |
+
submission_url="http://www.mpf.mp.br",
|
| 498 |
+
legal_basis=[
|
| 499 |
+
"Lei nº 8.429/1992 - Improbidade Administrativa",
|
| 500 |
+
"Lei Complementar nº 75/1993 - Lei Orgânica do MPF",
|
| 501 |
+
],
|
| 502 |
+
))
|
| 503 |
+
|
| 504 |
+
return actions
|
| 505 |
+
|
| 506 |
+
# Helper methods
|
| 507 |
+
|
| 508 |
+
def _map_severity(self, score: float) -> AnomalySeverity:
|
| 509 |
+
"""Map confidence score to severity level."""
|
| 510 |
+
if score >= 0.9:
|
| 511 |
+
return AnomalySeverity.CRITICAL
|
| 512 |
+
elif score >= 0.7:
|
| 513 |
+
return AnomalySeverity.HIGH
|
| 514 |
+
elif score >= 0.5:
|
| 515 |
+
return AnomalySeverity.MEDIUM
|
| 516 |
+
elif score >= 0.3:
|
| 517 |
+
return AnomalySeverity.LOW
|
| 518 |
+
return AnomalySeverity.INFO
|
| 519 |
+
|
| 520 |
+
def _generate_title(self, anomaly: Dict[str, Any], contract: Dict[str, Any]) -> str:
|
| 521 |
+
"""Generate descriptive title."""
|
| 522 |
+
anomaly_type = anomaly.get('type', 'unknown')
|
| 523 |
+
supplier = contract.get('fornecedor', {}).get('nome', 'Fornecedor não identificado')
|
| 524 |
+
return f"Anomalia: {anomaly_type} - Contrato com {supplier}"
|
| 525 |
+
|
| 526 |
+
def _build_detailed_description(
|
| 527 |
+
self,
|
| 528 |
+
anomaly: Dict[str, Any],
|
| 529 |
+
contract: Dict[str, Any],
|
| 530 |
+
evidence: List[Evidence]
|
| 531 |
+
) -> str:
|
| 532 |
+
"""Build detailed technical description."""
|
| 533 |
+
return f"""
|
| 534 |
+
**DESCRIÇÃO DETALHADA DA ANOMALIA**
|
| 535 |
+
|
| 536 |
+
Tipo de Anomalia: {anomaly.get('type')}
|
| 537 |
+
Confiança: {anomaly.get('confidence', 0) * 100:.1f}%
|
| 538 |
+
|
| 539 |
+
Contrato: {contract.get('numeroContrato') or 'Não identificado'}
|
| 540 |
+
Fornecedor: {contract.get('fornecedor', {}).get('nome')}
|
| 541 |
+
Valor: R$ {contract.get('valorInicial', 0):,.2f}
|
| 542 |
+
|
| 543 |
+
Esta análise identificou {len(evidence)} peças de evidência que suportam a conclusão de irregularidade.
|
| 544 |
+
Cada evidência foi coletada de fontes oficiais e pode ser verificada independentemente através dos links fornecidos.
|
| 545 |
+
"""
|
| 546 |
+
|
| 547 |
+
def _describe_what_happened(self, anomaly: Dict[str, Any], contract: Dict[str, Any]) -> str:
|
| 548 |
+
"""Describe what happened in clear terms."""
|
| 549 |
+
return anomaly.get('description', 'Descrição não disponível')
|
| 550 |
+
|
| 551 |
+
def _describe_detection_method(self, anomaly: Dict[str, Any]) -> str:
|
| 552 |
+
"""Describe how the anomaly was detected."""
|
| 553 |
+
return "Análise automatizada usando algoritmos de detecção de anomalias baseados em machine learning e análise estatística"
|
| 554 |
+
|
| 555 |
+
def _describe_methodology(self, anomaly: Dict[str, Any]) -> str:
|
| 556 |
+
"""Describe analysis methodology."""
|
| 557 |
+
return """
|
| 558 |
+
Metodologia aplicada:
|
| 559 |
+
1. Coleta de dados do Portal da Transparência via API REST
|
| 560 |
+
2. Normalização e limpeza de dados
|
| 561 |
+
3. Análise estatística comparativa (z-score, desvio padrão)
|
| 562 |
+
4. Comparação com base histórica de contratos similares
|
| 563 |
+
5. Verificação de conformidade legal
|
| 564 |
+
6. Cálculo de confiança usando ensemble de modelos
|
| 565 |
+
"""
|
| 566 |
+
|
| 567 |
+
def _explain_why_suspicious(self, anomaly: Dict[str, Any], contract: Dict[str, Any]) -> str:
|
| 568 |
+
"""Explain why this is suspicious."""
|
| 569 |
+
return anomaly.get('explanation', 'Explicação não disponível')
|
| 570 |
+
|
| 571 |
+
def _identify_legal_violations(self, anomaly: Dict[str, Any], contract: Dict[str, Any]) -> List[str]:
|
| 572 |
+
"""Identify potential legal violations."""
|
| 573 |
+
return [
|
| 574 |
+
"Possível sobrepreço (Lei 8.666/93, Art. 43, IV)",
|
| 575 |
+
"Falta de pesquisa de preços adequada (Lei 8.666/93, Art. 43, IV)",
|
| 576 |
+
]
|
| 577 |
+
|
| 578 |
+
def _assess_data_quality(self, contract: Dict[str, Any]) -> float:
|
| 579 |
+
"""Assess quality of data available."""
|
| 580 |
+
# Count how many key fields are present
|
| 581 |
+
key_fields = ['numeroContrato', 'valorInicial', 'fornecedor', 'dataAssinatura']
|
| 582 |
+
present = sum(1 for field in key_fields if contract.get(field))
|
| 583 |
+
return present / len(key_fields)
|
| 584 |
+
|
| 585 |
+
def _assess_completeness(self, contract: Dict[str, Any]) -> float:
|
| 586 |
+
"""Assess completeness of contract data."""
|
| 587 |
+
all_fields = ['numeroContrato', 'valorInicial', 'fornecedor', 'dataAssinatura',
|
| 588 |
+
'dataInicioVigencia', 'dataFimVigencia', 'objeto', 'modalidadeCompra']
|
| 589 |
+
present = sum(1 for field in all_fields if contract.get(field))
|
| 590 |
+
return present / len(all_fields)
|
| 591 |
+
|
| 592 |
+
def _list_data_sources(self, contract: Dict[str, Any]) -> List[str]:
|
| 593 |
+
"""List all data sources used."""
|
| 594 |
+
return [
|
| 595 |
+
"Portal da Transparência do Governo Federal",
|
| 596 |
+
"API de Dados Abertos do Governo Federal",
|
| 597 |
+
"Base histórica de contratos públicos",
|
| 598 |
+
]
|
| 599 |
+
|
| 600 |
+
def _list_api_endpoints(self, contract: Dict[str, Any]) -> List[str]:
|
| 601 |
+
"""List API endpoints used."""
|
| 602 |
+
return [
|
| 603 |
+
"https://api.portaldatransparencia.gov.br/api-de-dados/contratos",
|
| 604 |
+
"https://api.portaldatransparencia.gov.br/api-de-dados/fornecedores",
|
| 605 |
+
]
|
| 606 |
+
|
| 607 |
+
def _identify_procedure_violations(self, anomaly_type: str) -> List[str]:
|
| 608 |
+
"""Identify which procedures may have been violated."""
|
| 609 |
+
violations = {
|
| 610 |
+
"price_deviation": [
|
| 611 |
+
"Pesquisa de preços inadequada ou ausente",
|
| 612 |
+
"Não observância do princípio da economicidade",
|
| 613 |
+
],
|
| 614 |
+
"vendor_concentration": [
|
| 615 |
+
"Possível direcionamento de licitação",
|
| 616 |
+
"Restrição à competitividade",
|
| 617 |
+
],
|
| 618 |
+
}
|
| 619 |
+
return violations.get(anomaly_type, [])
|
| 620 |
+
|
| 621 |
+
def _calculate_opportunity_cost(self, overcharge: float) -> str:
|
| 622 |
+
"""Calculate what could be done with the overcharged amount."""
|
| 623 |
+
# Examples of what the money could fund
|
| 624 |
+
return f"Com R$ {overcharge:,.2f} seria possível contratar aproximadamente {int(overcharge / 5000)} consultas médicas no SUS"
|
| 625 |
+
|
| 626 |
+
def _build_contract_url(self, contract_id: Optional[str]) -> Optional[str]:
|
| 627 |
+
"""Build direct URL to contract in transparency portal."""
|
| 628 |
+
if not contract_id:
|
| 629 |
+
return None
|
| 630 |
+
return f"{self.transparency_portal_base}/despesas/contrato/{contract_id}"
|
| 631 |
+
|
| 632 |
+
def _build_supplier_url(self, cnpj: Optional[str]) -> Optional[str]:
|
| 633 |
+
"""Build URL to supplier page."""
|
| 634 |
+
if not cnpj:
|
| 635 |
+
return None
|
| 636 |
+
# Remove formatting from CNPJ
|
| 637 |
+
cnpj_clean = ''.join(c for c in str(cnpj) if c.isdigit())
|
| 638 |
+
return f"{self.transparency_portal_base}/despesas/fornecedor/{cnpj_clean}"
|
| 639 |
+
|
| 640 |
+
def _build_agency_url(self, code: Optional[str]) -> Optional[str]:
|
| 641 |
+
"""Build URL to agency page."""
|
| 642 |
+
if not code:
|
| 643 |
+
return None
|
| 644 |
+
return f"{self.transparency_portal_base}/orgaos/{code}"
|
| 645 |
+
|
| 646 |
+
def _build_receita_url(self, cnpj: Optional[str]) -> Optional[str]:
|
| 647 |
+
"""Build URL to Receita Federal."""
|
| 648 |
+
if not cnpj:
|
| 649 |
+
return None
|
| 650 |
+
return f"{self.receita_federal_base}/servicos/cnpj/cnpj.asp"
|
| 651 |
+
|
| 652 |
+
def _parse_date(self, date_str: Optional[str]) -> datetime:
|
| 653 |
+
"""Parse date string to datetime."""
|
| 654 |
+
if not date_str:
|
| 655 |
+
return datetime.utcnow()
|
| 656 |
+
|
| 657 |
+
# Try different formats
|
| 658 |
+
for fmt in ['%d/%m/%Y', '%Y-%m-%d', '%d-%m-%Y']:
|
| 659 |
+
try:
|
| 660 |
+
return datetime.strptime(date_str, fmt)
|
| 661 |
+
except (ValueError, TypeError):
|
| 662 |
+
continue
|
| 663 |
+
|
| 664 |
+
return datetime.utcnow()
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
# Global service instance
|
| 668 |
+
forensic_enrichment_service = ForensicEnrichmentService()
|