anderson-ufrj
commited on
Commit
·
dc1e705
1
Parent(s):
f81934c
feat: integrate Maritaca AI Sabiá-3 with Drummond agent
Browse files- Add MaritacaClient for Sabiá-3 Brazilian Portuguese LLM
- Integrate LLM capabilities into Drummond conversational agent
- Update generate_contextual_response to use Sabiá-3 for natural language
- Add comprehensive error handling and fallback responses
- Configure MARITACA_API_KEY environment variable
- Include unit tests and integration examples
- Add documentation for Maritaca AI integration
This enables Drummond to generate contextual, poetic responses using the Sabiá-3 model, enhancing the conversational experience with Brazilian cultural references and natural Portuguese language generation.
- .env.hf +1 -0
- docs/maritaca_integration.md +249 -0
- examples/maritaca_drummond_integration.py +318 -0
- src/agents/drummond.py +70 -2
- src/core/config.py +11 -0
- src/llm/providers.py +96 -1
- src/services/__init__.py +5 -1
- src/services/maritaca_client.py +578 -0
- tests/unit/test_maritaca_client.py +281 -0
.env.hf
CHANGED
|
@@ -28,6 +28,7 @@ API_SECRET_KEY=${API_SECRET_KEY}
|
|
| 28 |
# External APIs
|
| 29 |
TRANSPARENCY_API_KEY=${TRANSPARENCY_API_KEY}
|
| 30 |
GROQ_API_KEY=${GROQ_API_KEY}
|
|
|
|
| 31 |
|
| 32 |
# CORS
|
| 33 |
CORS_ORIGINS=["*"]
|
|
|
|
| 28 |
# External APIs
|
| 29 |
TRANSPARENCY_API_KEY=${TRANSPARENCY_API_KEY}
|
| 30 |
GROQ_API_KEY=${GROQ_API_KEY}
|
| 31 |
+
MARITACA_API_KEY=${MARITACA_API_KEY}
|
| 32 |
|
| 33 |
# CORS
|
| 34 |
CORS_ORIGINS=["*"]
|
docs/maritaca_integration.md
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Maritaca AI Integration Guide
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
|
| 5 |
+
This guide covers the integration of Maritaca AI's Sabiá-3 language model with the Cidadão.AI backend, specifically for use with the Drummond agent for conversational AI and natural language generation in Brazilian Portuguese.
|
| 6 |
+
|
| 7 |
+
## Features
|
| 8 |
+
|
| 9 |
+
The `MaritacaClient` provides:
|
| 10 |
+
|
| 11 |
+
- **Async/await support** for all operations
|
| 12 |
+
- **Streaming responses** for real-time text generation
|
| 13 |
+
- **Automatic retry** with exponential backoff
|
| 14 |
+
- **Rate limit handling** with smart retries
|
| 15 |
+
- **Circuit breaker pattern** for resilience
|
| 16 |
+
- **Comprehensive error handling** and logging
|
| 17 |
+
- **Type hints** for better development experience
|
| 18 |
+
- **Context manager support** for proper resource cleanup
|
| 19 |
+
|
| 20 |
+
## Configuration
|
| 21 |
+
|
| 22 |
+
### Environment Variables
|
| 23 |
+
|
| 24 |
+
Add the following to your `.env` file:
|
| 25 |
+
|
| 26 |
+
```env
|
| 27 |
+
# Maritaca AI Configuration
|
| 28 |
+
MARITACA_API_KEY=your-api-key-here
|
| 29 |
+
MARITACA_API_BASE_URL=https://chat.maritaca.ai/api
|
| 30 |
+
MARITACA_MODEL=sabia-3
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
### Available Models
|
| 34 |
+
|
| 35 |
+
- `sabia-3` - Standard Sabiá-3 model
|
| 36 |
+
- `sabia-3-medium` - Medium-sized variant
|
| 37 |
+
- `sabia-3-large` - Large variant for complex tasks
|
| 38 |
+
|
| 39 |
+
## Usage Examples
|
| 40 |
+
|
| 41 |
+
### Basic Chat Completion
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
from src.services.maritaca_client import create_maritaca_client
|
| 45 |
+
|
| 46 |
+
async def example():
|
| 47 |
+
async with create_maritaca_client(api_key="your-key") as client:
|
| 48 |
+
response = await client.chat_completion(
|
| 49 |
+
messages=[
|
| 50 |
+
{"role": "user", "content": "Olá, como você está?"}
|
| 51 |
+
],
|
| 52 |
+
temperature=0.7,
|
| 53 |
+
max_tokens=100
|
| 54 |
+
)
|
| 55 |
+
print(response.content)
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
### Streaming Response
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
async def streaming_example():
|
| 62 |
+
async with create_maritaca_client(api_key="your-key") as client:
|
| 63 |
+
async for chunk in await client.chat_completion(
|
| 64 |
+
messages=[{"role": "user", "content": "Conte uma história"}],
|
| 65 |
+
stream=True
|
| 66 |
+
):
|
| 67 |
+
print(chunk, end="", flush=True)
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
### Integration with LLM Manager
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
from src.llm.providers import LLMManager, LLMProvider, LLMRequest
|
| 74 |
+
|
| 75 |
+
# Configure with Maritaca as primary provider
|
| 76 |
+
manager = LLMManager(
|
| 77 |
+
primary_provider=LLMProvider.MARITACA,
|
| 78 |
+
fallback_providers=[LLMProvider.GROQ, LLMProvider.TOGETHER]
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
request = LLMRequest(
|
| 82 |
+
messages=[{"role": "user", "content": "Analyze government spending"}],
|
| 83 |
+
temperature=0.7,
|
| 84 |
+
max_tokens=500
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
response = await manager.complete(request)
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
### Drummond Agent Integration
|
| 91 |
+
|
| 92 |
+
The Drummond agent can now use Maritaca AI for natural language generation:
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
from src.agents.drummond import CommunicationAgent, AgentContext
|
| 96 |
+
|
| 97 |
+
context = AgentContext(
|
| 98 |
+
user_id="user123",
|
| 99 |
+
session_id="session456",
|
| 100 |
+
metadata={
|
| 101 |
+
"llm_provider": "maritaca",
|
| 102 |
+
"llm_model": "sabia-3"
|
| 103 |
+
}
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
drummond = CommunicationAgent()
|
| 107 |
+
# Agent will automatically use Maritaca for NLG tasks
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
## API Reference
|
| 111 |
+
|
| 112 |
+
### MaritacaClient
|
| 113 |
+
|
| 114 |
+
#### Constructor Parameters
|
| 115 |
+
|
| 116 |
+
- `api_key` (str): Your Maritaca AI API key
|
| 117 |
+
- `base_url` (str): API base URL (default: "https://chat.maritaca.ai/api")
|
| 118 |
+
- `model` (str): Default model to use (default: "sabia-3")
|
| 119 |
+
- `timeout` (int): Request timeout in seconds (default: 60)
|
| 120 |
+
- `max_retries` (int): Maximum retry attempts (default: 3)
|
| 121 |
+
- `circuit_breaker_threshold` (int): Failures before circuit opens (default: 5)
|
| 122 |
+
- `circuit_breaker_timeout` (int): Circuit reset time in seconds (default: 60)
|
| 123 |
+
|
| 124 |
+
#### Methods
|
| 125 |
+
|
| 126 |
+
##### `chat_completion()`
|
| 127 |
+
|
| 128 |
+
Create a chat completion with Maritaca AI.
|
| 129 |
+
|
| 130 |
+
**Parameters:**
|
| 131 |
+
- `messages`: List of conversation messages
|
| 132 |
+
- `model`: Optional model override
|
| 133 |
+
- `temperature`: Sampling temperature (0.0-2.0)
|
| 134 |
+
- `max_tokens`: Maximum tokens to generate
|
| 135 |
+
- `top_p`: Top-p sampling parameter
|
| 136 |
+
- `frequency_penalty`: Frequency penalty (-2.0 to 2.0)
|
| 137 |
+
- `presence_penalty`: Presence penalty (-2.0 to 2.0)
|
| 138 |
+
- `stop`: List of stop sequences
|
| 139 |
+
- `stream`: Enable streaming response
|
| 140 |
+
|
| 141 |
+
**Returns:**
|
| 142 |
+
- `MaritacaResponse` for non-streaming
|
| 143 |
+
- `AsyncGenerator[str, None]` for streaming
|
| 144 |
+
|
| 145 |
+
##### `health_check()`
|
| 146 |
+
|
| 147 |
+
Check Maritaca AI service health.
|
| 148 |
+
|
| 149 |
+
**Returns:**
|
| 150 |
+
- Dictionary with status information
|
| 151 |
+
|
| 152 |
+
## Error Handling
|
| 153 |
+
|
| 154 |
+
The client handles various error scenarios:
|
| 155 |
+
|
| 156 |
+
```python
|
| 157 |
+
from src.core.exceptions import LLMError, LLMRateLimitError
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
response = await client.chat_completion(messages)
|
| 161 |
+
except LLMRateLimitError as e:
|
| 162 |
+
# Handle rate limiting
|
| 163 |
+
retry_after = e.details.get("retry_after", 60)
|
| 164 |
+
await asyncio.sleep(retry_after)
|
| 165 |
+
except LLMError as e:
|
| 166 |
+
# Handle other API errors
|
| 167 |
+
logger.error(f"Maritaca error: {e}")
|
| 168 |
+
```
|
| 169 |
+
|
| 170 |
+
## Circuit Breaker
|
| 171 |
+
|
| 172 |
+
The circuit breaker protects against cascading failures:
|
| 173 |
+
|
| 174 |
+
1. **Closed State**: Normal operation
|
| 175 |
+
2. **Open State**: After threshold failures, requests fail immediately
|
| 176 |
+
3. **Reset**: After timeout, circuit closes and requests resume
|
| 177 |
+
|
| 178 |
+
## Performance Considerations
|
| 179 |
+
|
| 180 |
+
- **Connection Pooling**: Client maintains up to 20 connections
|
| 181 |
+
- **Keep-alive**: Connections stay alive for 30 seconds
|
| 182 |
+
- **Streaming**: Use for long responses to improve perceived latency
|
| 183 |
+
- **Retry Strategy**: Exponential backoff prevents overwhelming the API
|
| 184 |
+
|
| 185 |
+
## Testing
|
| 186 |
+
|
| 187 |
+
Run the test suite:
|
| 188 |
+
|
| 189 |
+
```bash
|
| 190 |
+
# Unit tests
|
| 191 |
+
pytest tests/unit/test_maritaca_client.py -v
|
| 192 |
+
|
| 193 |
+
# Integration example
|
| 194 |
+
python examples/maritaca_drummond_integration.py
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
## Best Practices
|
| 198 |
+
|
| 199 |
+
1. **Always use context managers** to ensure proper cleanup
|
| 200 |
+
2. **Set appropriate timeouts** based on expected response times
|
| 201 |
+
3. **Use streaming** for long-form content generation
|
| 202 |
+
4. **Monitor circuit breaker status** in production
|
| 203 |
+
5. **Implement proper error handling** for all API calls
|
| 204 |
+
6. **Cache responses** when appropriate to reduce API calls
|
| 205 |
+
|
| 206 |
+
## Troubleshooting
|
| 207 |
+
|
| 208 |
+
### Common Issues
|
| 209 |
+
|
| 210 |
+
1. **Circuit Breaker Open**
|
| 211 |
+
- Check API status
|
| 212 |
+
- Review recent error logs
|
| 213 |
+
- Wait for circuit reset timeout
|
| 214 |
+
|
| 215 |
+
2. **Rate Limiting**
|
| 216 |
+
- Implement request queuing
|
| 217 |
+
- Use retry-after header
|
| 218 |
+
- Consider upgrading API plan
|
| 219 |
+
|
| 220 |
+
3. **Timeout Errors**
|
| 221 |
+
- Increase timeout for complex requests
|
| 222 |
+
- Use streaming for long responses
|
| 223 |
+
- Check network connectivity
|
| 224 |
+
|
| 225 |
+
### Debug Logging
|
| 226 |
+
|
| 227 |
+
Enable debug logs:
|
| 228 |
+
|
| 229 |
+
```python
|
| 230 |
+
import logging
|
| 231 |
+
logging.getLogger("src.services.maritaca_client").setLevel(logging.DEBUG)
|
| 232 |
+
```
|
| 233 |
+
|
| 234 |
+
## Security Notes
|
| 235 |
+
|
| 236 |
+
- **Never commit API keys** to version control
|
| 237 |
+
- **Use environment variables** for sensitive data
|
| 238 |
+
- **Rotate keys regularly** in production
|
| 239 |
+
- **Monitor API usage** for anomalies
|
| 240 |
+
|
| 241 |
+
## Support
|
| 242 |
+
|
| 243 |
+
For Maritaca AI specific issues:
|
| 244 |
+
- Documentation: https://docs.maritaca.ai
|
| 245 |
+
- Support: [email protected]
|
| 246 |
+
|
| 247 |
+
For Cidadão.AI integration issues:
|
| 248 |
+
- Create an issue in the project repository
|
| 249 |
+
- Check the logs for detailed error information
|
examples/maritaca_drummond_integration.py
ADDED
|
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Example: Maritaca AI integration with Drummond agent for conversational AI.
|
| 4 |
+
|
| 5 |
+
This example demonstrates how to use the Maritaca AI client (Sabiá-3 model)
|
| 6 |
+
with the Drummond agent for natural language generation in Brazilian Portuguese.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import asyncio
|
| 10 |
+
import os
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
from typing import List, Dict
|
| 13 |
+
|
| 14 |
+
from src.services.maritaca_client import create_maritaca_client, MaritacaModel
|
| 15 |
+
from src.agents.drummond import CommunicationAgent, AgentContext, AgentMessage
|
| 16 |
+
from src.core import get_logger
|
| 17 |
+
|
| 18 |
+
# Initialize logger
|
| 19 |
+
logger = get_logger(__name__)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
async def example_maritaca_conversation():
|
| 23 |
+
"""Example of direct Maritaca AI conversation."""
|
| 24 |
+
print("\n=== Example: Direct Maritaca AI Conversation ===\n")
|
| 25 |
+
|
| 26 |
+
# Get API key from environment
|
| 27 |
+
api_key = os.getenv("MARITACA_API_KEY")
|
| 28 |
+
if not api_key:
|
| 29 |
+
print("❌ Please set MARITACA_API_KEY environment variable")
|
| 30 |
+
return
|
| 31 |
+
|
| 32 |
+
# Create Maritaca client
|
| 33 |
+
async with create_maritaca_client(
|
| 34 |
+
api_key=api_key,
|
| 35 |
+
model=MaritacaModel.SABIA_3
|
| 36 |
+
) as client:
|
| 37 |
+
|
| 38 |
+
# Example 1: Simple completion
|
| 39 |
+
print("1. Simple completion example:")
|
| 40 |
+
messages = [
|
| 41 |
+
{
|
| 42 |
+
"role": "system",
|
| 43 |
+
"content": "Você é um assistente especializado em transparência governamental brasileira."
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"role": "user",
|
| 47 |
+
"content": "Explique brevemente o que é o Portal da Transparência."
|
| 48 |
+
}
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
response = await client.chat_completion(
|
| 52 |
+
messages=messages,
|
| 53 |
+
temperature=0.7,
|
| 54 |
+
max_tokens=200
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
print(f"Response: {response.content}")
|
| 58 |
+
print(f"Model: {response.model}")
|
| 59 |
+
print(f"Tokens used: {response.usage.get('total_tokens', 'N/A')}")
|
| 60 |
+
print(f"Response time: {response.response_time:.2f}s\n")
|
| 61 |
+
|
| 62 |
+
# Example 2: Streaming response
|
| 63 |
+
print("2. Streaming response example:")
|
| 64 |
+
messages.append({
|
| 65 |
+
"role": "assistant",
|
| 66 |
+
"content": response.content
|
| 67 |
+
})
|
| 68 |
+
messages.append({
|
| 69 |
+
"role": "user",
|
| 70 |
+
"content": "Como posso acessar dados de licitações?"
|
| 71 |
+
})
|
| 72 |
+
|
| 73 |
+
print("Streaming response: ", end="", flush=True)
|
| 74 |
+
async for chunk in await client.chat_completion(
|
| 75 |
+
messages=messages,
|
| 76 |
+
stream=True,
|
| 77 |
+
max_tokens=150
|
| 78 |
+
):
|
| 79 |
+
print(chunk, end="", flush=True)
|
| 80 |
+
print("\n")
|
| 81 |
+
|
| 82 |
+
# Example 3: Multi-turn conversation
|
| 83 |
+
print("3. Multi-turn conversation example:")
|
| 84 |
+
conversation = [
|
| 85 |
+
{
|
| 86 |
+
"role": "system",
|
| 87 |
+
"content": "Você é um especialista em análise de gastos públicos. Responda de forma clara e objetiva."
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"role": "user",
|
| 91 |
+
"content": "Quais são os principais tipos de despesas do governo federal?"
|
| 92 |
+
}
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
# First turn
|
| 96 |
+
response = await client.chat_completion(conversation, max_tokens=200)
|
| 97 |
+
print(f"Assistant: {response.content}")
|
| 98 |
+
|
| 99 |
+
conversation.extend([
|
| 100 |
+
{"role": "assistant", "content": response.content},
|
| 101 |
+
{"role": "user", "content": "E como posso verificar essas despesas online?"}
|
| 102 |
+
])
|
| 103 |
+
|
| 104 |
+
# Second turn
|
| 105 |
+
response = await client.chat_completion(conversation, max_tokens=200)
|
| 106 |
+
print(f"Assistant: {response.content}")
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
async def example_drummond_with_maritaca():
|
| 110 |
+
"""Example of Drummond agent using Maritaca AI for NLG."""
|
| 111 |
+
print("\n=== Example: Drummond Agent with Maritaca AI ===\n")
|
| 112 |
+
|
| 113 |
+
# Get API key
|
| 114 |
+
api_key = os.getenv("MARITACA_API_KEY")
|
| 115 |
+
if not api_key:
|
| 116 |
+
print("❌ Please set MARITACA_API_KEY environment variable")
|
| 117 |
+
return
|
| 118 |
+
|
| 119 |
+
# Create context for Drummond agent
|
| 120 |
+
context = AgentContext(
|
| 121 |
+
user_id="example_user",
|
| 122 |
+
session_id="example_session",
|
| 123 |
+
metadata={
|
| 124 |
+
"llm_provider": "maritaca",
|
| 125 |
+
"llm_model": MaritacaModel.SABIA_3,
|
| 126 |
+
"api_key": api_key
|
| 127 |
+
}
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Initialize Drummond agent
|
| 131 |
+
drummond = CommunicationAgent()
|
| 132 |
+
|
| 133 |
+
# Example investigation data to communicate
|
| 134 |
+
investigation_data = {
|
| 135 |
+
"type": "anomaly_detection",
|
| 136 |
+
"title": "Despesas Irregulares em Contratos de TI",
|
| 137 |
+
"summary": "Análise identificou possíveis irregularidades em contratos de TI",
|
| 138 |
+
"findings": [
|
| 139 |
+
{
|
| 140 |
+
"contract_id": "CT-2024-001",
|
| 141 |
+
"supplier": "TechCorp Ltda",
|
| 142 |
+
"value": 5000000.00,
|
| 143 |
+
"anomaly_score": 0.92,
|
| 144 |
+
"issues": [
|
| 145 |
+
"Valor 300% acima da média de mercado",
|
| 146 |
+
"Fornecedor sem histórico anterior",
|
| 147 |
+
"Prazo de entrega incompatível"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"contract_id": "CT-2024-002",
|
| 152 |
+
"supplier": "DataSys S.A.",
|
| 153 |
+
"value": 3200000.00,
|
| 154 |
+
"anomaly_score": 0.85,
|
| 155 |
+
"issues": [
|
| 156 |
+
"Especificações técnicas genéricas",
|
| 157 |
+
"Ausência de justificativa para escolha"
|
| 158 |
+
]
|
| 159 |
+
}
|
| 160 |
+
],
|
| 161 |
+
"recommendations": [
|
| 162 |
+
"Realizar auditoria detalhada dos contratos",
|
| 163 |
+
"Verificar documentação dos fornecedores",
|
| 164 |
+
"Comparar com preços de referência do mercado"
|
| 165 |
+
]
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
# Create message for Drummond to process
|
| 169 |
+
message = AgentMessage(
|
| 170 |
+
sender="zumbi", # From Zumbi agent (anomaly detector)
|
| 171 |
+
receiver="drummond",
|
| 172 |
+
action="generate_report",
|
| 173 |
+
payload={
|
| 174 |
+
"investigation": investigation_data,
|
| 175 |
+
"target_audience": "citizens",
|
| 176 |
+
"language": "pt-BR",
|
| 177 |
+
"tone": "informative_accessible",
|
| 178 |
+
"channels": ["portal_web", "email"],
|
| 179 |
+
"use_maritaca": True # Signal to use Maritaca AI
|
| 180 |
+
}
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
print("Processing investigation report with Drummond + Maritaca AI...")
|
| 184 |
+
|
| 185 |
+
# Process with Drummond
|
| 186 |
+
# Note: This would normally use the agent's process method
|
| 187 |
+
# but for this example, we'll simulate the key parts
|
| 188 |
+
|
| 189 |
+
# Simulate Drummond using Maritaca for report generation
|
| 190 |
+
async with create_maritaca_client(api_key=api_key) as maritaca:
|
| 191 |
+
# Generate citizen-friendly report
|
| 192 |
+
report_prompt = f"""
|
| 193 |
+
Como especialista em comunicação governamental, crie um relatório acessível ao cidadão sobre a seguinte análise:
|
| 194 |
+
|
| 195 |
+
Tipo: {investigation_data['type']}
|
| 196 |
+
Título: {investigation_data['title']}
|
| 197 |
+
Resumo: {investigation_data['summary']}
|
| 198 |
+
|
| 199 |
+
Achados principais:
|
| 200 |
+
{format_findings(investigation_data['findings'])}
|
| 201 |
+
|
| 202 |
+
Recomendações:
|
| 203 |
+
{format_list(investigation_data['recommendations'])}
|
| 204 |
+
|
| 205 |
+
Requisitos:
|
| 206 |
+
- Linguagem clara e acessível
|
| 207 |
+
- Evite jargões técnicos
|
| 208 |
+
- Explique a importância para o cidadão
|
| 209 |
+
- Máximo 300 palavras
|
| 210 |
+
- Tom informativo mas não alarmista
|
| 211 |
+
"""
|
| 212 |
+
|
| 213 |
+
response = await maritaca.chat_completion(
|
| 214 |
+
messages=[
|
| 215 |
+
{
|
| 216 |
+
"role": "system",
|
| 217 |
+
"content": "Você é Carlos Drummond de Andrade, o comunicador oficial do sistema Cidadão.AI. Sua missão é traduzir análises técnicas em linguagem acessível ao cidadão brasileiro."
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"role": "user",
|
| 221 |
+
"content": report_prompt
|
| 222 |
+
}
|
| 223 |
+
],
|
| 224 |
+
temperature=0.7,
|
| 225 |
+
max_tokens=500
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
print("\n📄 Relatório Gerado (via Maritaca AI):")
|
| 229 |
+
print("-" * 50)
|
| 230 |
+
print(response.content)
|
| 231 |
+
print("-" * 50)
|
| 232 |
+
|
| 233 |
+
# Generate email version
|
| 234 |
+
email_prompt = """
|
| 235 |
+
Agora crie uma versão resumida deste relatório para envio por email (máximo 150 palavras).
|
| 236 |
+
Inclua:
|
| 237 |
+
- Assunto sugestivo
|
| 238 |
+
- Resumo dos principais pontos
|
| 239 |
+
- Call-to-action para ver relatório completo
|
| 240 |
+
"""
|
| 241 |
+
|
| 242 |
+
response = await maritaca.chat_completion(
|
| 243 |
+
messages=[
|
| 244 |
+
{
|
| 245 |
+
"role": "system",
|
| 246 |
+
"content": "Você é um especialista em comunicação por email."
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"role": "user",
|
| 250 |
+
"content": email_prompt
|
| 251 |
+
}
|
| 252 |
+
],
|
| 253 |
+
temperature=0.7,
|
| 254 |
+
max_tokens=200
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
print("\n📧 Versão Email (via Maritaca AI):")
|
| 258 |
+
print("-" * 50)
|
| 259 |
+
print(response.content)
|
| 260 |
+
print("-" * 50)
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
def format_findings(findings: List[Dict]) -> str:
|
| 264 |
+
"""Format findings for prompt."""
|
| 265 |
+
result = []
|
| 266 |
+
for i, finding in enumerate(findings, 1):
|
| 267 |
+
issues = ", ".join(finding['issues'])
|
| 268 |
+
result.append(
|
| 269 |
+
f"{i}. Contrato {finding['contract_id']} - {finding['supplier']}: "
|
| 270 |
+
f"R$ {finding['value']:,.2f} (Score anomalia: {finding['anomaly_score']:.0%}). "
|
| 271 |
+
f"Problemas: {issues}"
|
| 272 |
+
)
|
| 273 |
+
return "\n".join(result)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def format_list(items: List[str]) -> str:
|
| 277 |
+
"""Format list items."""
|
| 278 |
+
return "\n".join(f"- {item}" for item in items)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
async def example_health_check():
|
| 282 |
+
"""Example of checking Maritaca AI service health."""
|
| 283 |
+
print("\n=== Example: Maritaca AI Health Check ===\n")
|
| 284 |
+
|
| 285 |
+
api_key = os.getenv("MARITACA_API_KEY")
|
| 286 |
+
if not api_key:
|
| 287 |
+
print("❌ Please set MARITACA_API_KEY environment variable")
|
| 288 |
+
return
|
| 289 |
+
|
| 290 |
+
async with create_maritaca_client(api_key=api_key) as client:
|
| 291 |
+
health = await client.health_check()
|
| 292 |
+
|
| 293 |
+
print(f"Status: {health['status']}")
|
| 294 |
+
print(f"Provider: {health['provider']}")
|
| 295 |
+
print(f"Model: {health['model']}")
|
| 296 |
+
print(f"Circuit Breaker: {health['circuit_breaker']}")
|
| 297 |
+
print(f"Timestamp: {health['timestamp']}")
|
| 298 |
+
|
| 299 |
+
if health.get('error'):
|
| 300 |
+
print(f"Error: {health['error']}")
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
async def main():
|
| 304 |
+
"""Run all examples."""
|
| 305 |
+
print("🤖 Maritaca AI + Drummond Agent Integration Examples")
|
| 306 |
+
print("=" * 60)
|
| 307 |
+
|
| 308 |
+
# Run examples
|
| 309 |
+
await example_health_check()
|
| 310 |
+
await example_maritaca_conversation()
|
| 311 |
+
await example_drummond_with_maritaca()
|
| 312 |
+
|
| 313 |
+
print("\n✅ All examples completed!")
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
if __name__ == "__main__":
|
| 317 |
+
# Note: Set MARITACA_API_KEY environment variable before running
|
| 318 |
+
asyncio.run(main())
|
src/agents/drummond.py
CHANGED
|
@@ -23,6 +23,7 @@ from src.core import get_logger
|
|
| 23 |
from src.core.exceptions import AgentExecutionError, DataAnalysisError
|
| 24 |
from src.services.chat_service import IntentType, Intent
|
| 25 |
from src.memory.conversational import ConversationalMemory, ConversationContext
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
class CommunicationChannel(Enum):
|
|
@@ -259,6 +260,10 @@ class CommunicationAgent(BaseAgent):
|
|
| 259 |
# Conversational memory for dialogue
|
| 260 |
self.conversational_memory = ConversationalMemory()
|
| 261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
# Personality configuration
|
| 263 |
self.personality_prompt = """
|
| 264 |
Você é Carlos Drummond de Andrade, o poeta de Itabira, agora servindo como
|
|
@@ -286,6 +291,24 @@ class CommunicationAgent(BaseAgent):
|
|
| 286 |
- Use exemplos concretos e relevantes para o contexto brasileiro
|
| 287 |
"""
|
| 288 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
async def initialize(self) -> None:
|
| 290 |
"""Inicializa templates, canais e configurações."""
|
| 291 |
self.logger.info("Initializing Carlos Drummond de Andrade communication system...")
|
|
@@ -663,9 +686,54 @@ class CommunicationAgent(BaseAgent):
|
|
| 663 |
context: ConversationContext
|
| 664 |
) -> Dict[str, str]:
|
| 665 |
"""Gera resposta contextual para conversa geral."""
|
| 666 |
-
# Simplified contextual response for now
|
| 667 |
-
# In production, this would use LLM with personality prompt
|
| 668 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 669 |
response = f"""
|
| 670 |
Interessante sua colocação... '{message[:30]}...'
|
| 671 |
|
|
|
|
| 23 |
from src.core.exceptions import AgentExecutionError, DataAnalysisError
|
| 24 |
from src.services.chat_service import IntentType, Intent
|
| 25 |
from src.memory.conversational import ConversationalMemory, ConversationContext
|
| 26 |
+
from src.services.maritaca_client import MaritacaClient, MaritacaModel, MaritacaMessage
|
| 27 |
|
| 28 |
|
| 29 |
class CommunicationChannel(Enum):
|
|
|
|
| 260 |
# Conversational memory for dialogue
|
| 261 |
self.conversational_memory = ConversationalMemory()
|
| 262 |
|
| 263 |
+
# Initialize Maritaca AI client for Sabiá-3
|
| 264 |
+
self.llm_client = None
|
| 265 |
+
self._init_llm_client()
|
| 266 |
+
|
| 267 |
# Personality configuration
|
| 268 |
self.personality_prompt = """
|
| 269 |
Você é Carlos Drummond de Andrade, o poeta de Itabira, agora servindo como
|
|
|
|
| 291 |
- Use exemplos concretos e relevantes para o contexto brasileiro
|
| 292 |
"""
|
| 293 |
|
| 294 |
+
def _init_llm_client(self):
|
| 295 |
+
"""Initialize Maritaca AI client."""
|
| 296 |
+
try:
|
| 297 |
+
import os
|
| 298 |
+
api_key = os.environ.get("MARITACA_API_KEY")
|
| 299 |
+
if api_key:
|
| 300 |
+
self.llm_client = MaritacaClient(
|
| 301 |
+
api_key=api_key,
|
| 302 |
+
model=MaritacaModel.SABIA_3,
|
| 303 |
+
timeout=30
|
| 304 |
+
)
|
| 305 |
+
self.logger.info("Maritaca AI client initialized with Sabiá-3")
|
| 306 |
+
else:
|
| 307 |
+
self.logger.warning("No MARITACA_API_KEY found, using fallback responses")
|
| 308 |
+
except Exception as e:
|
| 309 |
+
self.logger.error(f"Failed to initialize Maritaca AI client: {e}")
|
| 310 |
+
self.llm_client = None
|
| 311 |
+
|
| 312 |
async def initialize(self) -> None:
|
| 313 |
"""Inicializa templates, canais e configurações."""
|
| 314 |
self.logger.info("Initializing Carlos Drummond de Andrade communication system...")
|
|
|
|
| 686 |
context: ConversationContext
|
| 687 |
) -> Dict[str, str]:
|
| 688 |
"""Gera resposta contextual para conversa geral."""
|
|
|
|
|
|
|
| 689 |
|
| 690 |
+
# If we have LLM client, use it for more natural responses
|
| 691 |
+
if self.llm_client:
|
| 692 |
+
try:
|
| 693 |
+
# Get conversation history
|
| 694 |
+
try:
|
| 695 |
+
history = await self.conversational_memory.get_recent_messages(
|
| 696 |
+
context.session_id,
|
| 697 |
+
limit=5
|
| 698 |
+
)
|
| 699 |
+
except AttributeError:
|
| 700 |
+
# If method doesn't exist, use empty history
|
| 701 |
+
history = []
|
| 702 |
+
|
| 703 |
+
# Build messages for LLM
|
| 704 |
+
messages = [
|
| 705 |
+
MaritacaMessage(role="system", content=self.personality_prompt)
|
| 706 |
+
]
|
| 707 |
+
|
| 708 |
+
# Add conversation history
|
| 709 |
+
for msg in history:
|
| 710 |
+
role = "user" if msg["role"] == "user" else "assistant"
|
| 711 |
+
messages.append(MaritacaMessage(role=role, content=msg["content"]))
|
| 712 |
+
|
| 713 |
+
# Add current message
|
| 714 |
+
messages.append(MaritacaMessage(role="user", content=message))
|
| 715 |
+
|
| 716 |
+
# Generate response with Sabiá-3
|
| 717 |
+
response = await self.llm_client.chat(
|
| 718 |
+
messages=messages,
|
| 719 |
+
temperature=0.7,
|
| 720 |
+
max_tokens=500
|
| 721 |
+
)
|
| 722 |
+
|
| 723 |
+
return {
|
| 724 |
+
"content": response.content.strip(),
|
| 725 |
+
"metadata": {
|
| 726 |
+
"type": "contextual",
|
| 727 |
+
"llm_model": response.model,
|
| 728 |
+
"usage": response.usage
|
| 729 |
+
}
|
| 730 |
+
}
|
| 731 |
+
|
| 732 |
+
except Exception as e:
|
| 733 |
+
self.logger.error(f"Error generating LLM response: {e}")
|
| 734 |
+
# Fall back to template response
|
| 735 |
+
|
| 736 |
+
# Fallback response if no LLM or error
|
| 737 |
response = f"""
|
| 738 |
Interessante sua colocação... '{message[:30]}...'
|
| 739 |
|
src/core/config.py
CHANGED
|
@@ -107,6 +107,17 @@ class Settings(BaseSettings):
|
|
| 107 |
description="HuggingFace model ID"
|
| 108 |
)
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
# Vector Store
|
| 111 |
vector_store_type: str = Field(
|
| 112 |
default="faiss",
|
|
|
|
| 107 |
description="HuggingFace model ID"
|
| 108 |
)
|
| 109 |
|
| 110 |
+
# Maritaca AI Configuration
|
| 111 |
+
maritaca_api_key: Optional[SecretStr] = Field(default=None, description="Maritaca AI API key")
|
| 112 |
+
maritaca_api_base_url: str = Field(
|
| 113 |
+
default="https://chat.maritaca.ai/api",
|
| 114 |
+
description="Maritaca AI base URL"
|
| 115 |
+
)
|
| 116 |
+
maritaca_model: str = Field(
|
| 117 |
+
default="sabia-3",
|
| 118 |
+
description="Default Maritaca AI model (sabia-3, sabia-3-medium, sabia-3-large)"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
# Vector Store
|
| 122 |
vector_store_type: str = Field(
|
| 123 |
default="faiss",
|
src/llm/providers.py
CHANGED
|
@@ -18,6 +18,7 @@ from pydantic import BaseModel, Field as PydanticField
|
|
| 18 |
|
| 19 |
from src.core import get_logger, settings
|
| 20 |
from src.core.exceptions import LLMError, LLMRateLimitError
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
class LLMProvider(str, Enum):
|
|
@@ -25,6 +26,7 @@ class LLMProvider(str, Enum):
|
|
| 25 |
GROQ = "groq"
|
| 26 |
TOGETHER = "together"
|
| 27 |
HUGGINGFACE = "huggingface"
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
@dataclass
|
|
@@ -521,6 +523,98 @@ class HuggingFaceProvider(BaseLLMProvider):
|
|
| 521 |
)
|
| 522 |
|
| 523 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
class LLMManager:
|
| 525 |
"""Manager for multiple LLM providers with fallback support."""
|
| 526 |
|
|
@@ -539,7 +633,7 @@ class LLMManager:
|
|
| 539 |
enable_fallback: Enable automatic fallback on errors
|
| 540 |
"""
|
| 541 |
self.primary_provider = primary_provider
|
| 542 |
-
self.fallback_providers = fallback_providers or [LLMProvider.TOGETHER, LLMProvider.HUGGINGFACE]
|
| 543 |
self.enable_fallback = enable_fallback
|
| 544 |
self.logger = get_logger(__name__)
|
| 545 |
|
|
@@ -548,6 +642,7 @@ class LLMManager:
|
|
| 548 |
LLMProvider.GROQ: GroqProvider(),
|
| 549 |
LLMProvider.TOGETHER: TogetherProvider(),
|
| 550 |
LLMProvider.HUGGINGFACE: HuggingFaceProvider(),
|
|
|
|
| 551 |
}
|
| 552 |
|
| 553 |
self.logger.info(
|
|
|
|
| 18 |
|
| 19 |
from src.core import get_logger, settings
|
| 20 |
from src.core.exceptions import LLMError, LLMRateLimitError
|
| 21 |
+
from src.services.maritaca_client import MaritacaClient, MaritacaModel
|
| 22 |
|
| 23 |
|
| 24 |
class LLMProvider(str, Enum):
|
|
|
|
| 26 |
GROQ = "groq"
|
| 27 |
TOGETHER = "together"
|
| 28 |
HUGGINGFACE = "huggingface"
|
| 29 |
+
MARITACA = "maritaca"
|
| 30 |
|
| 31 |
|
| 32 |
@dataclass
|
|
|
|
| 523 |
)
|
| 524 |
|
| 525 |
|
| 526 |
+
class MaritacaProvider(BaseLLMProvider):
|
| 527 |
+
"""Maritaca AI provider implementation."""
|
| 528 |
+
|
| 529 |
+
def __init__(self, api_key: Optional[str] = None):
|
| 530 |
+
"""Initialize Maritaca AI provider."""
|
| 531 |
+
# We don't use the base class init for Maritaca since it has its own client
|
| 532 |
+
self.api_key = api_key or settings.maritaca_api_key.get_secret_value()
|
| 533 |
+
self.default_model = settings.maritaca_model
|
| 534 |
+
self.logger = get_logger(__name__)
|
| 535 |
+
|
| 536 |
+
# Create Maritaca client
|
| 537 |
+
self.maritaca_client = MaritacaClient(
|
| 538 |
+
api_key=self.api_key,
|
| 539 |
+
base_url=settings.maritaca_api_base_url,
|
| 540 |
+
model=self.default_model
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
async def __aenter__(self):
|
| 544 |
+
"""Async context manager entry."""
|
| 545 |
+
await self.maritaca_client.__aenter__()
|
| 546 |
+
return self
|
| 547 |
+
|
| 548 |
+
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
| 549 |
+
"""Async context manager exit."""
|
| 550 |
+
await self.maritaca_client.__aexit__(exc_type, exc_val, exc_tb)
|
| 551 |
+
|
| 552 |
+
async def close(self):
|
| 553 |
+
"""Close Maritaca client."""
|
| 554 |
+
await self.maritaca_client.close()
|
| 555 |
+
|
| 556 |
+
async def complete(self, request: LLMRequest) -> LLMResponse:
|
| 557 |
+
"""Complete text generation using Maritaca AI."""
|
| 558 |
+
messages = self._prepare_messages(request)
|
| 559 |
+
|
| 560 |
+
response = await self.maritaca_client.chat_completion(
|
| 561 |
+
messages=messages,
|
| 562 |
+
model=request.model or self.default_model,
|
| 563 |
+
temperature=request.temperature,
|
| 564 |
+
max_tokens=request.max_tokens,
|
| 565 |
+
top_p=request.top_p,
|
| 566 |
+
stream=False
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
return LLMResponse(
|
| 570 |
+
content=response.content,
|
| 571 |
+
provider="maritaca",
|
| 572 |
+
model=response.model,
|
| 573 |
+
usage=response.usage,
|
| 574 |
+
metadata=response.metadata,
|
| 575 |
+
response_time=response.response_time,
|
| 576 |
+
timestamp=response.timestamp
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
async def stream_complete(self, request: LLMRequest) -> AsyncGenerator[str, None]:
|
| 580 |
+
"""Stream text generation using Maritaca AI."""
|
| 581 |
+
messages = self._prepare_messages(request)
|
| 582 |
+
|
| 583 |
+
async for chunk in await self.maritaca_client.chat_completion(
|
| 584 |
+
messages=messages,
|
| 585 |
+
model=request.model or self.default_model,
|
| 586 |
+
temperature=request.temperature,
|
| 587 |
+
max_tokens=request.max_tokens,
|
| 588 |
+
top_p=request.top_p,
|
| 589 |
+
stream=True
|
| 590 |
+
):
|
| 591 |
+
yield chunk
|
| 592 |
+
|
| 593 |
+
def _prepare_messages(self, request: LLMRequest) -> List[Dict[str, str]]:
|
| 594 |
+
"""Prepare messages for Maritaca API."""
|
| 595 |
+
messages = []
|
| 596 |
+
|
| 597 |
+
# Add system prompt if provided
|
| 598 |
+
if request.system_prompt:
|
| 599 |
+
messages.append({
|
| 600 |
+
"role": "system",
|
| 601 |
+
"content": request.system_prompt
|
| 602 |
+
})
|
| 603 |
+
|
| 604 |
+
# Add conversation messages
|
| 605 |
+
messages.extend(request.messages)
|
| 606 |
+
|
| 607 |
+
return messages
|
| 608 |
+
|
| 609 |
+
def _prepare_request_data(self, request: LLMRequest) -> Dict[str, Any]:
|
| 610 |
+
"""Not used for Maritaca - using direct client instead."""
|
| 611 |
+
pass
|
| 612 |
+
|
| 613 |
+
def _parse_response(self, response_data: Dict[str, Any], response_time: float) -> LLMResponse:
|
| 614 |
+
"""Not used for Maritaca - using direct client instead."""
|
| 615 |
+
pass
|
| 616 |
+
|
| 617 |
+
|
| 618 |
class LLMManager:
|
| 619 |
"""Manager for multiple LLM providers with fallback support."""
|
| 620 |
|
|
|
|
| 633 |
enable_fallback: Enable automatic fallback on errors
|
| 634 |
"""
|
| 635 |
self.primary_provider = primary_provider
|
| 636 |
+
self.fallback_providers = fallback_providers or [LLMProvider.TOGETHER, LLMProvider.HUGGINGFACE, LLMProvider.MARITACA]
|
| 637 |
self.enable_fallback = enable_fallback
|
| 638 |
self.logger = get_logger(__name__)
|
| 639 |
|
|
|
|
| 642 |
LLMProvider.GROQ: GroqProvider(),
|
| 643 |
LLMProvider.TOGETHER: TogetherProvider(),
|
| 644 |
LLMProvider.HUGGINGFACE: HuggingFaceProvider(),
|
| 645 |
+
LLMProvider.MARITACA: MaritacaProvider(),
|
| 646 |
}
|
| 647 |
|
| 648 |
self.logger.info(
|
src/services/__init__.py
CHANGED
|
@@ -11,9 +11,13 @@ Status: Stub implementation - Full services planned for production phase.
|
|
| 11 |
from .data_service import DataService
|
| 12 |
from .analysis_service import AnalysisService
|
| 13 |
from .notification_service import NotificationService
|
|
|
|
| 14 |
|
| 15 |
__all__ = [
|
| 16 |
"DataService",
|
| 17 |
"AnalysisService",
|
| 18 |
-
"NotificationService"
|
|
|
|
|
|
|
|
|
|
| 19 |
]
|
|
|
|
| 11 |
from .data_service import DataService
|
| 12 |
from .analysis_service import AnalysisService
|
| 13 |
from .notification_service import NotificationService
|
| 14 |
+
from .maritaca_client import MaritacaClient, MaritacaModel, create_maritaca_client
|
| 15 |
|
| 16 |
__all__ = [
|
| 17 |
"DataService",
|
| 18 |
"AnalysisService",
|
| 19 |
+
"NotificationService",
|
| 20 |
+
"MaritacaClient",
|
| 21 |
+
"MaritacaModel",
|
| 22 |
+
"create_maritaca_client"
|
| 23 |
]
|
src/services/maritaca_client.py
ADDED
|
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Module: services.maritaca_client
|
| 3 |
+
Description: Maritaca AI/Sabiá-3 API client for Brazilian Portuguese language models
|
| 4 |
+
Author: Anderson H. Silva
|
| 5 |
+
Date: 2025-01-19
|
| 6 |
+
License: Proprietary - All rights reserved
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import asyncio
|
| 10 |
+
import json
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
from typing import Any, Dict, List, Optional, Union, AsyncGenerator
|
| 13 |
+
from dataclasses import dataclass
|
| 14 |
+
from enum import Enum
|
| 15 |
+
|
| 16 |
+
import httpx
|
| 17 |
+
from pydantic import BaseModel, Field
|
| 18 |
+
|
| 19 |
+
from src.core import get_logger
|
| 20 |
+
from src.core.exceptions import LLMError, LLMRateLimitError
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class MaritacaModel(str, Enum):
|
| 24 |
+
"""Available Maritaca AI models."""
|
| 25 |
+
SABIA_3 = "sabia-3"
|
| 26 |
+
SABIA_3_MEDIUM = "sabia-3-medium"
|
| 27 |
+
SABIA_3_LARGE = "sabia-3-large"
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class MaritacaResponse:
|
| 32 |
+
"""Response from Maritaca AI API."""
|
| 33 |
+
|
| 34 |
+
content: str
|
| 35 |
+
model: str
|
| 36 |
+
usage: Dict[str, Any]
|
| 37 |
+
metadata: Dict[str, Any]
|
| 38 |
+
response_time: float
|
| 39 |
+
timestamp: datetime
|
| 40 |
+
finish_reason: Optional[str] = None
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class MaritacaMessage(BaseModel):
|
| 44 |
+
"""Message format for Maritaca AI."""
|
| 45 |
+
|
| 46 |
+
role: str = Field(description="Message role (system, user, assistant)")
|
| 47 |
+
content: str = Field(description="Message content")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class MaritacaRequest(BaseModel):
|
| 51 |
+
"""Request format for Maritaca AI."""
|
| 52 |
+
|
| 53 |
+
messages: List[MaritacaMessage] = Field(description="Conversation messages")
|
| 54 |
+
model: str = Field(default=MaritacaModel.SABIA_3, description="Model to use")
|
| 55 |
+
temperature: float = Field(default=0.7, ge=0.0, le=2.0, description="Sampling temperature")
|
| 56 |
+
max_tokens: int = Field(default=2048, ge=1, le=8192, description="Maximum tokens to generate")
|
| 57 |
+
top_p: float = Field(default=0.9, ge=0.0, le=1.0, description="Top-p sampling")
|
| 58 |
+
frequency_penalty: float = Field(default=0.0, ge=-2.0, le=2.0, description="Frequency penalty")
|
| 59 |
+
presence_penalty: float = Field(default=0.0, ge=-2.0, le=2.0, description="Presence penalty")
|
| 60 |
+
stream: bool = Field(default=False, description="Enable streaming response")
|
| 61 |
+
stop: Optional[List[str]] = Field(default=None, description="Stop sequences")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class MaritacaClient:
|
| 65 |
+
"""
|
| 66 |
+
Async client for Maritaca AI/Sabiá-3 API.
|
| 67 |
+
|
| 68 |
+
This client provides:
|
| 69 |
+
- Async/await support for all operations
|
| 70 |
+
- Automatic retry with exponential backoff
|
| 71 |
+
- Rate limit handling
|
| 72 |
+
- Streaming support
|
| 73 |
+
- Comprehensive error handling
|
| 74 |
+
- Request/response logging
|
| 75 |
+
- Circuit breaker pattern for resilience
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
api_key: str,
|
| 81 |
+
base_url: str = "https://chat.maritaca.ai/api",
|
| 82 |
+
model: str = MaritacaModel.SABIA_3,
|
| 83 |
+
timeout: int = 60,
|
| 84 |
+
max_retries: int = 3,
|
| 85 |
+
circuit_breaker_threshold: int = 5,
|
| 86 |
+
circuit_breaker_timeout: int = 60,
|
| 87 |
+
):
|
| 88 |
+
"""
|
| 89 |
+
Initialize Maritaca AI client.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
api_key: API key for authentication
|
| 93 |
+
base_url: Base URL for Maritaca AI API
|
| 94 |
+
model: Default model to use
|
| 95 |
+
timeout: Request timeout in seconds
|
| 96 |
+
max_retries: Maximum number of retries on failure
|
| 97 |
+
circuit_breaker_threshold: Number of failures before circuit opens
|
| 98 |
+
circuit_breaker_timeout: Time in seconds before circuit breaker resets
|
| 99 |
+
"""
|
| 100 |
+
self.api_key = api_key
|
| 101 |
+
self.base_url = base_url.rstrip("/")
|
| 102 |
+
self.default_model = model
|
| 103 |
+
self.timeout = timeout
|
| 104 |
+
self.max_retries = max_retries
|
| 105 |
+
self.logger = get_logger(__name__)
|
| 106 |
+
|
| 107 |
+
# Circuit breaker state
|
| 108 |
+
self._circuit_breaker_failures = 0
|
| 109 |
+
self._circuit_breaker_threshold = circuit_breaker_threshold
|
| 110 |
+
self._circuit_breaker_timeout = circuit_breaker_timeout
|
| 111 |
+
self._circuit_breaker_opened_at: Optional[datetime] = None
|
| 112 |
+
|
| 113 |
+
# HTTP client configuration
|
| 114 |
+
self.client = httpx.AsyncClient(
|
| 115 |
+
timeout=httpx.Timeout(timeout),
|
| 116 |
+
limits=httpx.Limits(
|
| 117 |
+
max_keepalive_connections=10,
|
| 118 |
+
max_connections=20,
|
| 119 |
+
keepalive_expiry=30.0
|
| 120 |
+
),
|
| 121 |
+
headers={
|
| 122 |
+
"User-Agent": "CidadaoAI/1.0.0 (Maritaca Client)",
|
| 123 |
+
"Accept": "application/json",
|
| 124 |
+
"Accept-Language": "pt-BR,pt;q=0.9",
|
| 125 |
+
}
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
self.logger.info(
|
| 129 |
+
"maritaca_client_initialized",
|
| 130 |
+
base_url=base_url,
|
| 131 |
+
model=model,
|
| 132 |
+
timeout=timeout,
|
| 133 |
+
max_retries=max_retries
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
async def __aenter__(self):
|
| 137 |
+
"""Async context manager entry."""
|
| 138 |
+
return self
|
| 139 |
+
|
| 140 |
+
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
| 141 |
+
"""Async context manager exit."""
|
| 142 |
+
await self.close()
|
| 143 |
+
|
| 144 |
+
async def close(self):
|
| 145 |
+
"""Close HTTP client and cleanup resources."""
|
| 146 |
+
await self.client.aclose()
|
| 147 |
+
self.logger.info("maritaca_client_closed")
|
| 148 |
+
|
| 149 |
+
def _check_circuit_breaker(self) -> bool:
|
| 150 |
+
"""
|
| 151 |
+
Check if circuit breaker is open.
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
True if circuit is open (requests should be blocked)
|
| 155 |
+
"""
|
| 156 |
+
if self._circuit_breaker_opened_at:
|
| 157 |
+
elapsed = (datetime.utcnow() - self._circuit_breaker_opened_at).total_seconds()
|
| 158 |
+
if elapsed >= self._circuit_breaker_timeout:
|
| 159 |
+
# Reset circuit breaker
|
| 160 |
+
self._circuit_breaker_failures = 0
|
| 161 |
+
self._circuit_breaker_opened_at = None
|
| 162 |
+
self.logger.info("circuit_breaker_reset")
|
| 163 |
+
return False
|
| 164 |
+
return True
|
| 165 |
+
return False
|
| 166 |
+
|
| 167 |
+
def _record_failure(self):
|
| 168 |
+
"""Record a failure for circuit breaker."""
|
| 169 |
+
self._circuit_breaker_failures += 1
|
| 170 |
+
if self._circuit_breaker_failures >= self._circuit_breaker_threshold:
|
| 171 |
+
self._circuit_breaker_opened_at = datetime.utcnow()
|
| 172 |
+
self.logger.warning(
|
| 173 |
+
"circuit_breaker_opened",
|
| 174 |
+
failures=self._circuit_breaker_failures,
|
| 175 |
+
timeout=self._circuit_breaker_timeout
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
def _record_success(self):
|
| 179 |
+
"""Record a success and reset failure count."""
|
| 180 |
+
self._circuit_breaker_failures = 0
|
| 181 |
+
|
| 182 |
+
def _get_headers(self) -> Dict[str, str]:
|
| 183 |
+
"""Get request headers with authentication."""
|
| 184 |
+
return {
|
| 185 |
+
"Authorization": f"Bearer {self.api_key}",
|
| 186 |
+
"Content-Type": "application/json",
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
async def chat_completion(
|
| 190 |
+
self,
|
| 191 |
+
messages: List[Dict[str, str]],
|
| 192 |
+
model: Optional[str] = None,
|
| 193 |
+
temperature: float = 0.7,
|
| 194 |
+
max_tokens: int = 2048,
|
| 195 |
+
top_p: float = 0.9,
|
| 196 |
+
frequency_penalty: float = 0.0,
|
| 197 |
+
presence_penalty: float = 0.0,
|
| 198 |
+
stop: Optional[List[str]] = None,
|
| 199 |
+
stream: bool = False,
|
| 200 |
+
**kwargs
|
| 201 |
+
) -> Union[MaritacaResponse, AsyncGenerator[str, None]]:
|
| 202 |
+
"""
|
| 203 |
+
Create a chat completion with Maritaca AI.
|
| 204 |
+
|
| 205 |
+
Args:
|
| 206 |
+
messages: List of conversation messages
|
| 207 |
+
model: Model to use (defaults to client default)
|
| 208 |
+
temperature: Sampling temperature (0.0-2.0)
|
| 209 |
+
max_tokens: Maximum tokens to generate
|
| 210 |
+
top_p: Top-p sampling parameter
|
| 211 |
+
frequency_penalty: Frequency penalty (-2.0 to 2.0)
|
| 212 |
+
presence_penalty: Presence penalty (-2.0 to 2.0)
|
| 213 |
+
stop: List of stop sequences
|
| 214 |
+
stream: Enable streaming response
|
| 215 |
+
**kwargs: Additional parameters
|
| 216 |
+
|
| 217 |
+
Returns:
|
| 218 |
+
MaritacaResponse for non-streaming, AsyncGenerator for streaming
|
| 219 |
+
|
| 220 |
+
Raises:
|
| 221 |
+
LLMError: On API errors
|
| 222 |
+
LLMRateLimitError: On rate limit exceeded
|
| 223 |
+
"""
|
| 224 |
+
# Check circuit breaker
|
| 225 |
+
if self._check_circuit_breaker():
|
| 226 |
+
raise LLMError(
|
| 227 |
+
"Circuit breaker is open due to repeated failures",
|
| 228 |
+
details={
|
| 229 |
+
"provider": "maritaca",
|
| 230 |
+
"failures": self._circuit_breaker_failures
|
| 231 |
+
}
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Prepare request
|
| 235 |
+
request = MaritacaRequest(
|
| 236 |
+
messages=[
|
| 237 |
+
MaritacaMessage(role=msg["role"], content=msg["content"])
|
| 238 |
+
for msg in messages
|
| 239 |
+
],
|
| 240 |
+
model=model or self.default_model,
|
| 241 |
+
temperature=temperature,
|
| 242 |
+
max_tokens=max_tokens,
|
| 243 |
+
top_p=top_p,
|
| 244 |
+
frequency_penalty=frequency_penalty,
|
| 245 |
+
presence_penalty=presence_penalty,
|
| 246 |
+
stream=stream,
|
| 247 |
+
stop=stop
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# Log request
|
| 251 |
+
self.logger.info(
|
| 252 |
+
"maritaca_request_started",
|
| 253 |
+
model=request.model,
|
| 254 |
+
message_count=len(messages),
|
| 255 |
+
stream=stream,
|
| 256 |
+
max_tokens=max_tokens
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
if stream:
|
| 260 |
+
return self._stream_completion(request)
|
| 261 |
+
else:
|
| 262 |
+
return await self._complete(request)
|
| 263 |
+
|
| 264 |
+
async def _complete(self, request: MaritacaRequest) -> MaritacaResponse:
|
| 265 |
+
"""
|
| 266 |
+
Make a non-streaming completion request.
|
| 267 |
+
|
| 268 |
+
Args:
|
| 269 |
+
request: Maritaca request object
|
| 270 |
+
|
| 271 |
+
Returns:
|
| 272 |
+
MaritacaResponse with generated content
|
| 273 |
+
"""
|
| 274 |
+
endpoint = "/chat/completions"
|
| 275 |
+
data = request.model_dump(exclude_none=True)
|
| 276 |
+
|
| 277 |
+
for attempt in range(self.max_retries + 1):
|
| 278 |
+
try:
|
| 279 |
+
start_time = datetime.utcnow()
|
| 280 |
+
|
| 281 |
+
response = await self.client.post(
|
| 282 |
+
f"{self.base_url}{endpoint}",
|
| 283 |
+
json=data,
|
| 284 |
+
headers=self._get_headers()
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
response_time = (datetime.utcnow() - start_time).total_seconds()
|
| 288 |
+
|
| 289 |
+
if response.status_code == 200:
|
| 290 |
+
self._record_success()
|
| 291 |
+
response_data = response.json()
|
| 292 |
+
|
| 293 |
+
# Parse response
|
| 294 |
+
choice = response_data["choices"][0]
|
| 295 |
+
content = choice["message"]["content"]
|
| 296 |
+
|
| 297 |
+
self.logger.info(
|
| 298 |
+
"maritaca_request_success",
|
| 299 |
+
model=request.model,
|
| 300 |
+
response_time=response_time,
|
| 301 |
+
tokens_used=response_data.get("usage", {}).get("total_tokens", 0)
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
return MaritacaResponse(
|
| 305 |
+
content=content,
|
| 306 |
+
model=response_data.get("model", request.model),
|
| 307 |
+
usage=response_data.get("usage", {}),
|
| 308 |
+
metadata={
|
| 309 |
+
"id": response_data.get("id"),
|
| 310 |
+
"created": response_data.get("created"),
|
| 311 |
+
"object": response_data.get("object"),
|
| 312 |
+
},
|
| 313 |
+
response_time=response_time,
|
| 314 |
+
timestamp=datetime.utcnow(),
|
| 315 |
+
finish_reason=choice.get("finish_reason")
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
elif response.status_code == 429:
|
| 319 |
+
# Rate limit exceeded
|
| 320 |
+
self._record_failure()
|
| 321 |
+
retry_after = int(response.headers.get("Retry-After", 60))
|
| 322 |
+
|
| 323 |
+
self.logger.warning(
|
| 324 |
+
"maritaca_rate_limit_exceeded",
|
| 325 |
+
retry_after=retry_after,
|
| 326 |
+
attempt=attempt + 1
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
if attempt < self.max_retries:
|
| 330 |
+
await asyncio.sleep(retry_after)
|
| 331 |
+
continue
|
| 332 |
+
|
| 333 |
+
raise LLMRateLimitError(
|
| 334 |
+
"Maritaca AI rate limit exceeded",
|
| 335 |
+
details={
|
| 336 |
+
"provider": "maritaca",
|
| 337 |
+
"retry_after": retry_after
|
| 338 |
+
}
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
else:
|
| 342 |
+
# Other errors
|
| 343 |
+
self._record_failure()
|
| 344 |
+
error_msg = f"API request failed with status {response.status_code}"
|
| 345 |
+
|
| 346 |
+
try:
|
| 347 |
+
error_data = response.json()
|
| 348 |
+
error_msg = error_data.get("error", {}).get("message", error_msg)
|
| 349 |
+
except:
|
| 350 |
+
error_msg += f": {response.text}"
|
| 351 |
+
|
| 352 |
+
self.logger.error(
|
| 353 |
+
"maritaca_request_failed",
|
| 354 |
+
status_code=response.status_code,
|
| 355 |
+
error=error_msg,
|
| 356 |
+
attempt=attempt + 1
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
if attempt < self.max_retries:
|
| 360 |
+
await asyncio.sleep(2 ** attempt)
|
| 361 |
+
continue
|
| 362 |
+
|
| 363 |
+
raise LLMError(
|
| 364 |
+
error_msg,
|
| 365 |
+
details={
|
| 366 |
+
"provider": "maritaca",
|
| 367 |
+
"status_code": response.status_code
|
| 368 |
+
}
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
except httpx.TimeoutException:
|
| 372 |
+
self._record_failure()
|
| 373 |
+
self.logger.error(
|
| 374 |
+
"maritaca_request_timeout",
|
| 375 |
+
timeout=self.timeout,
|
| 376 |
+
attempt=attempt + 1
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
if attempt < self.max_retries:
|
| 380 |
+
await asyncio.sleep(2 ** attempt)
|
| 381 |
+
continue
|
| 382 |
+
|
| 383 |
+
raise LLMError(
|
| 384 |
+
f"Request timeout after {self.timeout} seconds",
|
| 385 |
+
details={"provider": "maritaca"}
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
except Exception as e:
|
| 389 |
+
self._record_failure()
|
| 390 |
+
self.logger.error(
|
| 391 |
+
"maritaca_request_error",
|
| 392 |
+
error=str(e),
|
| 393 |
+
error_type=type(e).__name__,
|
| 394 |
+
attempt=attempt + 1
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
if attempt < self.max_retries:
|
| 398 |
+
await asyncio.sleep(2 ** attempt)
|
| 399 |
+
continue
|
| 400 |
+
|
| 401 |
+
raise LLMError(
|
| 402 |
+
f"Unexpected error: {str(e)}",
|
| 403 |
+
details={
|
| 404 |
+
"provider": "maritaca",
|
| 405 |
+
"error_type": type(e).__name__
|
| 406 |
+
}
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
# Should not reach here
|
| 410 |
+
raise LLMError(
|
| 411 |
+
f"Failed after {self.max_retries + 1} attempts",
|
| 412 |
+
details={"provider": "maritaca"}
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
async def _stream_completion(self, request: MaritacaRequest) -> AsyncGenerator[str, None]:
|
| 416 |
+
"""
|
| 417 |
+
Make a streaming completion request.
|
| 418 |
+
|
| 419 |
+
Args:
|
| 420 |
+
request: Maritaca request object
|
| 421 |
+
|
| 422 |
+
Yields:
|
| 423 |
+
Text chunks as they are received
|
| 424 |
+
"""
|
| 425 |
+
endpoint = "/chat/completions"
|
| 426 |
+
data = request.model_dump(exclude_none=True)
|
| 427 |
+
|
| 428 |
+
for attempt in range(self.max_retries + 1):
|
| 429 |
+
try:
|
| 430 |
+
self.logger.info(
|
| 431 |
+
"maritaca_stream_started",
|
| 432 |
+
model=request.model,
|
| 433 |
+
attempt=attempt + 1
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
async with self.client.stream(
|
| 437 |
+
"POST",
|
| 438 |
+
f"{self.base_url}{endpoint}",
|
| 439 |
+
json=data,
|
| 440 |
+
headers=self._get_headers()
|
| 441 |
+
) as response:
|
| 442 |
+
if response.status_code == 200:
|
| 443 |
+
self._record_success()
|
| 444 |
+
|
| 445 |
+
async for line in response.aiter_lines():
|
| 446 |
+
if line.startswith("data: "):
|
| 447 |
+
data_str = line[6:] # Remove "data: " prefix
|
| 448 |
+
|
| 449 |
+
if data_str == "[DONE]":
|
| 450 |
+
break
|
| 451 |
+
|
| 452 |
+
try:
|
| 453 |
+
chunk_data = json.loads(data_str)
|
| 454 |
+
if "choices" in chunk_data and chunk_data["choices"]:
|
| 455 |
+
delta = chunk_data["choices"][0].get("delta", {})
|
| 456 |
+
if "content" in delta:
|
| 457 |
+
yield delta["content"]
|
| 458 |
+
except json.JSONDecodeError:
|
| 459 |
+
self.logger.warning(
|
| 460 |
+
"maritaca_stream_parse_error",
|
| 461 |
+
data=data_str
|
| 462 |
+
)
|
| 463 |
+
continue
|
| 464 |
+
|
| 465 |
+
self.logger.info("maritaca_stream_completed")
|
| 466 |
+
return
|
| 467 |
+
|
| 468 |
+
elif response.status_code == 429:
|
| 469 |
+
# Rate limit in streaming mode
|
| 470 |
+
self._record_failure()
|
| 471 |
+
retry_after = int(response.headers.get("Retry-After", 60))
|
| 472 |
+
|
| 473 |
+
if attempt < self.max_retries:
|
| 474 |
+
await asyncio.sleep(retry_after)
|
| 475 |
+
continue
|
| 476 |
+
|
| 477 |
+
raise LLMRateLimitError(
|
| 478 |
+
"Maritaca AI rate limit exceeded during streaming",
|
| 479 |
+
details={
|
| 480 |
+
"provider": "maritaca",
|
| 481 |
+
"retry_after": retry_after
|
| 482 |
+
}
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
else:
|
| 486 |
+
# Other streaming errors
|
| 487 |
+
self._record_failure()
|
| 488 |
+
error_text = await response.aread()
|
| 489 |
+
|
| 490 |
+
if attempt < self.max_retries:
|
| 491 |
+
await asyncio.sleep(2 ** attempt)
|
| 492 |
+
continue
|
| 493 |
+
|
| 494 |
+
raise LLMError(
|
| 495 |
+
f"Streaming failed with status {response.status_code}: {error_text}",
|
| 496 |
+
details={
|
| 497 |
+
"provider": "maritaca",
|
| 498 |
+
"status_code": response.status_code
|
| 499 |
+
}
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
except Exception as e:
|
| 503 |
+
self._record_failure()
|
| 504 |
+
self.logger.error(
|
| 505 |
+
"maritaca_stream_error",
|
| 506 |
+
error=str(e),
|
| 507 |
+
error_type=type(e).__name__,
|
| 508 |
+
attempt=attempt + 1
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
if attempt < self.max_retries:
|
| 512 |
+
await asyncio.sleep(2 ** attempt)
|
| 513 |
+
continue
|
| 514 |
+
|
| 515 |
+
raise LLMError(
|
| 516 |
+
f"Streaming error: {str(e)}",
|
| 517 |
+
details={
|
| 518 |
+
"provider": "maritaca",
|
| 519 |
+
"error_type": type(e).__name__
|
| 520 |
+
}
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
async def health_check(self) -> Dict[str, Any]:
|
| 524 |
+
"""
|
| 525 |
+
Check Maritaca AI API health.
|
| 526 |
+
|
| 527 |
+
Returns:
|
| 528 |
+
Health status information
|
| 529 |
+
"""
|
| 530 |
+
try:
|
| 531 |
+
# Make a minimal request to check API availability
|
| 532 |
+
response = await self.chat_completion(
|
| 533 |
+
messages=[{"role": "user", "content": "Olá"}],
|
| 534 |
+
max_tokens=10,
|
| 535 |
+
temperature=0.0
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
return {
|
| 539 |
+
"status": "healthy",
|
| 540 |
+
"provider": "maritaca",
|
| 541 |
+
"model": self.default_model,
|
| 542 |
+
"circuit_breaker": "closed" if not self._check_circuit_breaker() else "open",
|
| 543 |
+
"timestamp": datetime.utcnow().isoformat()
|
| 544 |
+
}
|
| 545 |
+
|
| 546 |
+
except Exception as e:
|
| 547 |
+
return {
|
| 548 |
+
"status": "unhealthy",
|
| 549 |
+
"provider": "maritaca",
|
| 550 |
+
"model": self.default_model,
|
| 551 |
+
"circuit_breaker": "closed" if not self._check_circuit_breaker() else "open",
|
| 552 |
+
"error": str(e),
|
| 553 |
+
"timestamp": datetime.utcnow().isoformat()
|
| 554 |
+
}
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
# Factory function for easy client creation
|
| 558 |
+
def create_maritaca_client(
|
| 559 |
+
api_key: str,
|
| 560 |
+
model: str = MaritacaModel.SABIA_3,
|
| 561 |
+
**kwargs
|
| 562 |
+
) -> MaritacaClient:
|
| 563 |
+
"""
|
| 564 |
+
Create a Maritaca AI client with specified configuration.
|
| 565 |
+
|
| 566 |
+
Args:
|
| 567 |
+
api_key: Maritaca AI API key
|
| 568 |
+
model: Default model to use
|
| 569 |
+
**kwargs: Additional configuration options
|
| 570 |
+
|
| 571 |
+
Returns:
|
| 572 |
+
Configured MaritacaClient instance
|
| 573 |
+
"""
|
| 574 |
+
return MaritacaClient(
|
| 575 |
+
api_key=api_key,
|
| 576 |
+
model=model,
|
| 577 |
+
**kwargs
|
| 578 |
+
)
|
tests/unit/test_maritaca_client.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test suite for Maritaca AI client.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import asyncio
|
| 6 |
+
import pytest
|
| 7 |
+
from unittest.mock import AsyncMock, MagicMock, patch
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
|
| 10 |
+
from src.services.maritaca_client import (
|
| 11 |
+
MaritacaClient,
|
| 12 |
+
MaritacaModel,
|
| 13 |
+
MaritacaRequest,
|
| 14 |
+
MaritacaResponse,
|
| 15 |
+
create_maritaca_client
|
| 16 |
+
)
|
| 17 |
+
from src.core.exceptions import LLMError, LLMRateLimitError
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@pytest.fixture
|
| 21 |
+
def mock_api_key():
|
| 22 |
+
"""Mock API key for testing."""
|
| 23 |
+
return "test-maritaca-api-key"
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@pytest.fixture
|
| 27 |
+
def maritaca_client(mock_api_key):
|
| 28 |
+
"""Create a Maritaca client instance for testing."""
|
| 29 |
+
return MaritacaClient(
|
| 30 |
+
api_key=mock_api_key,
|
| 31 |
+
base_url="https://test.maritaca.ai/api",
|
| 32 |
+
max_retries=1,
|
| 33 |
+
timeout=10
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@pytest.fixture
|
| 38 |
+
def sample_messages():
|
| 39 |
+
"""Sample conversation messages."""
|
| 40 |
+
return [
|
| 41 |
+
{"role": "system", "content": "Você é um assistente útil."},
|
| 42 |
+
{"role": "user", "content": "Olá, como você está?"}
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@pytest.fixture
|
| 47 |
+
def mock_response_data():
|
| 48 |
+
"""Mock API response data."""
|
| 49 |
+
return {
|
| 50 |
+
"id": "test-123",
|
| 51 |
+
"object": "chat.completion",
|
| 52 |
+
"created": 1234567890,
|
| 53 |
+
"model": "sabia-3",
|
| 54 |
+
"choices": [
|
| 55 |
+
{
|
| 56 |
+
"index": 0,
|
| 57 |
+
"message": {
|
| 58 |
+
"role": "assistant",
|
| 59 |
+
"content": "Olá! Estou bem, obrigado por perguntar. Como posso ajudá-lo hoje?"
|
| 60 |
+
},
|
| 61 |
+
"finish_reason": "stop"
|
| 62 |
+
}
|
| 63 |
+
],
|
| 64 |
+
"usage": {
|
| 65 |
+
"prompt_tokens": 20,
|
| 66 |
+
"completion_tokens": 15,
|
| 67 |
+
"total_tokens": 35
|
| 68 |
+
}
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class TestMaritacaClient:
|
| 73 |
+
"""Test cases for MaritacaClient."""
|
| 74 |
+
|
| 75 |
+
@pytest.mark.asyncio
|
| 76 |
+
async def test_client_initialization(self, mock_api_key):
|
| 77 |
+
"""Test client initialization with various configurations."""
|
| 78 |
+
# Default initialization
|
| 79 |
+
client = MaritacaClient(api_key=mock_api_key)
|
| 80 |
+
assert client.api_key == mock_api_key
|
| 81 |
+
assert client.default_model == MaritacaModel.SABIA_3
|
| 82 |
+
assert client.timeout == 60
|
| 83 |
+
assert client.max_retries == 3
|
| 84 |
+
|
| 85 |
+
# Custom initialization
|
| 86 |
+
custom_client = MaritacaClient(
|
| 87 |
+
api_key=mock_api_key,
|
| 88 |
+
model=MaritacaModel.SABIA_3_LARGE,
|
| 89 |
+
timeout=30,
|
| 90 |
+
max_retries=5
|
| 91 |
+
)
|
| 92 |
+
assert custom_client.default_model == MaritacaModel.SABIA_3_LARGE
|
| 93 |
+
assert custom_client.timeout == 30
|
| 94 |
+
assert custom_client.max_retries == 5
|
| 95 |
+
|
| 96 |
+
await client.close()
|
| 97 |
+
await custom_client.close()
|
| 98 |
+
|
| 99 |
+
@pytest.mark.asyncio
|
| 100 |
+
async def test_chat_completion_success(self, maritaca_client, sample_messages, mock_response_data):
|
| 101 |
+
"""Test successful chat completion."""
|
| 102 |
+
with patch.object(maritaca_client.client, 'post') as mock_post:
|
| 103 |
+
mock_response = MagicMock()
|
| 104 |
+
mock_response.status_code = 200
|
| 105 |
+
mock_response.json.return_value = mock_response_data
|
| 106 |
+
mock_post.return_value = mock_response
|
| 107 |
+
|
| 108 |
+
response = await maritaca_client.chat_completion(
|
| 109 |
+
messages=sample_messages,
|
| 110 |
+
temperature=0.7,
|
| 111 |
+
max_tokens=100
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
assert isinstance(response, MaritacaResponse)
|
| 115 |
+
assert response.content == "Olá! Estou bem, obrigado por perguntar. Como posso ajudá-lo hoje?"
|
| 116 |
+
assert response.model == "sabia-3"
|
| 117 |
+
assert response.usage["total_tokens"] == 35
|
| 118 |
+
assert response.finish_reason == "stop"
|
| 119 |
+
|
| 120 |
+
# Verify API call
|
| 121 |
+
mock_post.assert_called_once()
|
| 122 |
+
call_args = mock_post.call_args
|
| 123 |
+
assert call_args[0][0] == "https://test.maritaca.ai/api/chat/completions"
|
| 124 |
+
assert "Authorization" in call_args[1]["headers"]
|
| 125 |
+
|
| 126 |
+
@pytest.mark.asyncio
|
| 127 |
+
async def test_chat_completion_rate_limit(self, maritaca_client, sample_messages):
|
| 128 |
+
"""Test rate limit handling."""
|
| 129 |
+
with patch.object(maritaca_client.client, 'post') as mock_post:
|
| 130 |
+
mock_response = MagicMock()
|
| 131 |
+
mock_response.status_code = 429
|
| 132 |
+
mock_response.headers = {"Retry-After": "60"}
|
| 133 |
+
mock_post.return_value = mock_response
|
| 134 |
+
|
| 135 |
+
with pytest.raises(LLMRateLimitError) as exc_info:
|
| 136 |
+
await maritaca_client.chat_completion(messages=sample_messages)
|
| 137 |
+
|
| 138 |
+
assert "rate limit exceeded" in str(exc_info.value).lower()
|
| 139 |
+
assert exc_info.value.details["provider"] == "maritaca"
|
| 140 |
+
|
| 141 |
+
@pytest.mark.asyncio
|
| 142 |
+
async def test_chat_completion_error_handling(self, maritaca_client, sample_messages):
|
| 143 |
+
"""Test error handling for API failures."""
|
| 144 |
+
with patch.object(maritaca_client.client, 'post') as mock_post:
|
| 145 |
+
mock_response = MagicMock()
|
| 146 |
+
mock_response.status_code = 500
|
| 147 |
+
mock_response.json.return_value = {
|
| 148 |
+
"error": {"message": "Internal server error"}
|
| 149 |
+
}
|
| 150 |
+
mock_post.return_value = mock_response
|
| 151 |
+
|
| 152 |
+
with pytest.raises(LLMError) as exc_info:
|
| 153 |
+
await maritaca_client.chat_completion(messages=sample_messages)
|
| 154 |
+
|
| 155 |
+
assert "Internal server error" in str(exc_info.value)
|
| 156 |
+
|
| 157 |
+
@pytest.mark.asyncio
|
| 158 |
+
async def test_streaming_completion(self, maritaca_client, sample_messages):
|
| 159 |
+
"""Test streaming chat completion."""
|
| 160 |
+
async def mock_aiter_lines():
|
| 161 |
+
yield "data: {\"choices\": [{\"delta\": {\"content\": \"Olá\"}}]}"
|
| 162 |
+
yield "data: {\"choices\": [{\"delta\": {\"content\": \"! \"}}]}"
|
| 163 |
+
yield "data: {\"choices\": [{\"delta\": {\"content\": \"Como\"}}]}"
|
| 164 |
+
yield "data: {\"choices\": [{\"delta\": {\"content\": \" posso\"}}]}"
|
| 165 |
+
yield "data: {\"choices\": [{\"delta\": {\"content\": \" ajudar?\"}}]}"
|
| 166 |
+
yield "data: [DONE]"
|
| 167 |
+
|
| 168 |
+
with patch.object(maritaca_client.client, 'stream') as mock_stream:
|
| 169 |
+
mock_response = AsyncMock()
|
| 170 |
+
mock_response.status_code = 200
|
| 171 |
+
mock_response.aiter_lines = mock_aiter_lines
|
| 172 |
+
mock_stream.return_value.__aenter__.return_value = mock_response
|
| 173 |
+
|
| 174 |
+
chunks = []
|
| 175 |
+
async for chunk in await maritaca_client.chat_completion(
|
| 176 |
+
messages=sample_messages,
|
| 177 |
+
stream=True
|
| 178 |
+
):
|
| 179 |
+
chunks.append(chunk)
|
| 180 |
+
|
| 181 |
+
assert len(chunks) == 5
|
| 182 |
+
assert "".join(chunks) == "Olá! Como posso ajudar?"
|
| 183 |
+
|
| 184 |
+
@pytest.mark.asyncio
|
| 185 |
+
async def test_circuit_breaker(self, maritaca_client, sample_messages):
|
| 186 |
+
"""Test circuit breaker functionality."""
|
| 187 |
+
# Force multiple failures to trigger circuit breaker
|
| 188 |
+
with patch.object(maritaca_client.client, 'post') as mock_post:
|
| 189 |
+
mock_post.side_effect = Exception("Connection failed")
|
| 190 |
+
|
| 191 |
+
for i in range(maritaca_client._circuit_breaker_threshold):
|
| 192 |
+
with pytest.raises(LLMError):
|
| 193 |
+
await maritaca_client.chat_completion(messages=sample_messages)
|
| 194 |
+
|
| 195 |
+
# Circuit should now be open
|
| 196 |
+
assert maritaca_client._check_circuit_breaker() is True
|
| 197 |
+
|
| 198 |
+
# Next request should fail immediately
|
| 199 |
+
with pytest.raises(LLMError) as exc_info:
|
| 200 |
+
await maritaca_client.chat_completion(messages=sample_messages)
|
| 201 |
+
|
| 202 |
+
assert "Circuit breaker is open" in str(exc_info.value)
|
| 203 |
+
|
| 204 |
+
@pytest.mark.asyncio
|
| 205 |
+
async def test_health_check(self, maritaca_client):
|
| 206 |
+
"""Test health check functionality."""
|
| 207 |
+
with patch.object(maritaca_client, 'chat_completion') as mock_completion:
|
| 208 |
+
mock_completion.return_value = MaritacaResponse(
|
| 209 |
+
content="Olá",
|
| 210 |
+
model="sabia-3",
|
| 211 |
+
usage={"total_tokens": 10},
|
| 212 |
+
metadata={},
|
| 213 |
+
response_time=0.5,
|
| 214 |
+
timestamp=datetime.utcnow()
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
health = await maritaca_client.health_check()
|
| 218 |
+
|
| 219 |
+
assert health["status"] == "healthy"
|
| 220 |
+
assert health["provider"] == "maritaca"
|
| 221 |
+
assert health["model"] == maritaca_client.default_model
|
| 222 |
+
assert health["circuit_breaker"] == "closed"
|
| 223 |
+
|
| 224 |
+
@pytest.mark.asyncio
|
| 225 |
+
async def test_context_manager(self, mock_api_key):
|
| 226 |
+
"""Test async context manager functionality."""
|
| 227 |
+
async with MaritacaClient(api_key=mock_api_key) as client:
|
| 228 |
+
assert client.api_key == mock_api_key
|
| 229 |
+
assert client.client is not None
|
| 230 |
+
|
| 231 |
+
# Client should be closed after context
|
| 232 |
+
with pytest.raises(RuntimeError):
|
| 233 |
+
await client.client.get("https://example.com")
|
| 234 |
+
|
| 235 |
+
def test_factory_function(self, mock_api_key):
|
| 236 |
+
"""Test factory function for client creation."""
|
| 237 |
+
client = create_maritaca_client(
|
| 238 |
+
api_key=mock_api_key,
|
| 239 |
+
model=MaritacaModel.SABIA_3_MEDIUM,
|
| 240 |
+
timeout=45
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
assert isinstance(client, MaritacaClient)
|
| 244 |
+
assert client.api_key == mock_api_key
|
| 245 |
+
assert client.default_model == MaritacaModel.SABIA_3_MEDIUM
|
| 246 |
+
assert client.timeout == 45
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
class TestMaritacaRequest:
|
| 250 |
+
"""Test cases for MaritacaRequest model."""
|
| 251 |
+
|
| 252 |
+
def test_request_validation(self):
|
| 253 |
+
"""Test request model validation."""
|
| 254 |
+
# Valid request
|
| 255 |
+
request = MaritacaRequest(
|
| 256 |
+
messages=[
|
| 257 |
+
MaritacaMessage(role="user", content="Hello")
|
| 258 |
+
],
|
| 259 |
+
temperature=0.8,
|
| 260 |
+
max_tokens=1000
|
| 261 |
+
)
|
| 262 |
+
assert request.temperature == 0.8
|
| 263 |
+
assert request.max_tokens == 1000
|
| 264 |
+
|
| 265 |
+
# Test temperature bounds
|
| 266 |
+
with pytest.raises(ValueError):
|
| 267 |
+
MaritacaRequest(
|
| 268 |
+
messages=[],
|
| 269 |
+
temperature=2.5 # Too high
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
# Test max_tokens bounds
|
| 273 |
+
with pytest.raises(ValueError):
|
| 274 |
+
MaritacaRequest(
|
| 275 |
+
messages=[],
|
| 276 |
+
max_tokens=10000 # Too high
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
if __name__ == "__main__":
|
| 281 |
+
pytest.main([__file__, "-v"])
|