anderson-ufrj
commited on
Commit
·
f29bf1c
1
Parent(s):
5688acd
feat(service): add high-level service for dados.gov.br integration
Browse files- Create service layer with business logic for open data portal
- Implement methods for searching transparency datasets
- Add specialized searches for spending and procurement data
- Include data availability analysis functionality
- Integrate caching for performance optimization
src/services/dados_gov_service.py
ADDED
|
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
High-level service for interacting with dados.gov.br API.
|
| 3 |
+
|
| 4 |
+
This service provides business logic and data transformation
|
| 5 |
+
for the Brazilian Open Data Portal integration.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import logging
|
| 9 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 10 |
+
|
| 11 |
+
from src.core.exceptions import ValidationError
|
| 12 |
+
from src.services.cache_service import CacheService, CacheTTL
|
| 13 |
+
from src.tools.dados_gov_api import DadosGovAPIClient, DadosGovAPIError
|
| 14 |
+
from src.tools.dados_gov_models import (
|
| 15 |
+
Dataset,
|
| 16 |
+
DatasetSearchResult,
|
| 17 |
+
Organization,
|
| 18 |
+
Resource,
|
| 19 |
+
ResourceSearchResult,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class DadosGovService:
|
| 26 |
+
"""
|
| 27 |
+
Service for accessing and analyzing data from dados.gov.br.
|
| 28 |
+
|
| 29 |
+
This service provides high-level methods for searching datasets,
|
| 30 |
+
analyzing data availability, and retrieving government open data.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
def __init__(self, api_key: Optional[str] = None):
|
| 34 |
+
"""
|
| 35 |
+
Initialize the dados.gov.br service.
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
api_key: Optional API key for authentication
|
| 39 |
+
"""
|
| 40 |
+
self.client = DadosGovAPIClient(api_key=api_key)
|
| 41 |
+
self.cache = CacheService()
|
| 42 |
+
|
| 43 |
+
async def close(self):
|
| 44 |
+
"""Close service connections"""
|
| 45 |
+
await self.client.close()
|
| 46 |
+
|
| 47 |
+
async def search_transparency_datasets(
|
| 48 |
+
self,
|
| 49 |
+
keywords: Optional[List[str]] = None,
|
| 50 |
+
organization: Optional[str] = None,
|
| 51 |
+
data_format: Optional[str] = None,
|
| 52 |
+
limit: int = 20,
|
| 53 |
+
) -> DatasetSearchResult:
|
| 54 |
+
"""
|
| 55 |
+
Search for transparency-related datasets.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
keywords: Keywords to search for (e.g., ["transparência", "gastos", "contratos"])
|
| 59 |
+
organization: Filter by specific organization
|
| 60 |
+
data_format: Preferred data format (csv, json, xml)
|
| 61 |
+
limit: Maximum number of results
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
Search results with relevant datasets
|
| 65 |
+
"""
|
| 66 |
+
# Build search query
|
| 67 |
+
query_parts = []
|
| 68 |
+
if keywords:
|
| 69 |
+
query_parts.extend(keywords)
|
| 70 |
+
else:
|
| 71 |
+
# Default transparency-related keywords
|
| 72 |
+
query_parts.extend([
|
| 73 |
+
"transparência",
|
| 74 |
+
"gastos públicos",
|
| 75 |
+
"contratos",
|
| 76 |
+
"licitações",
|
| 77 |
+
"servidores",
|
| 78 |
+
])
|
| 79 |
+
|
| 80 |
+
query = " OR ".join(query_parts)
|
| 81 |
+
|
| 82 |
+
# Check cache
|
| 83 |
+
cache_key = f"dados_gov:search:{query}:{organization}:{data_format}:{limit}"
|
| 84 |
+
cached_result = await self.cache.get(cache_key)
|
| 85 |
+
if cached_result:
|
| 86 |
+
return DatasetSearchResult(**cached_result)
|
| 87 |
+
|
| 88 |
+
try:
|
| 89 |
+
# Search datasets
|
| 90 |
+
result = await self.client.search_datasets(
|
| 91 |
+
query=query,
|
| 92 |
+
organization=organization,
|
| 93 |
+
format=data_format,
|
| 94 |
+
limit=limit,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Parse response
|
| 98 |
+
search_result = DatasetSearchResult(
|
| 99 |
+
count=result.get("count", 0),
|
| 100 |
+
results=[Dataset(**ds) for ds in result.get("results", [])],
|
| 101 |
+
facets=result.get("facets", {}),
|
| 102 |
+
search_facets=result.get("search_facets", {}),
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Cache result
|
| 106 |
+
await self.cache.set(
|
| 107 |
+
cache_key,
|
| 108 |
+
search_result.model_dump(),
|
| 109 |
+
ttl=CacheTTL.MEDIUM,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
return search_result
|
| 113 |
+
|
| 114 |
+
except DadosGovAPIError as e:
|
| 115 |
+
logger.error(f"Error searching datasets: {e}")
|
| 116 |
+
raise
|
| 117 |
+
|
| 118 |
+
async def get_dataset_with_resources(self, dataset_id: str) -> Dataset:
|
| 119 |
+
"""
|
| 120 |
+
Get complete dataset information including all resources.
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
dataset_id: Dataset identifier
|
| 124 |
+
|
| 125 |
+
Returns:
|
| 126 |
+
Complete dataset with resources
|
| 127 |
+
"""
|
| 128 |
+
# Check cache
|
| 129 |
+
cache_key = f"dados_gov:dataset:{dataset_id}"
|
| 130 |
+
cached_dataset = await self.cache.get(cache_key)
|
| 131 |
+
if cached_dataset:
|
| 132 |
+
return Dataset(**cached_dataset)
|
| 133 |
+
|
| 134 |
+
try:
|
| 135 |
+
# Get dataset details
|
| 136 |
+
result = await self.client.get_dataset(dataset_id)
|
| 137 |
+
dataset = Dataset(**result.get("result", {}))
|
| 138 |
+
|
| 139 |
+
# Cache result
|
| 140 |
+
await self.cache.set(
|
| 141 |
+
cache_key,
|
| 142 |
+
dataset.model_dump(),
|
| 143 |
+
ttl=CacheTTL.LONG,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
return dataset
|
| 147 |
+
|
| 148 |
+
except DadosGovAPIError as e:
|
| 149 |
+
logger.error(f"Error getting dataset {dataset_id}: {e}")
|
| 150 |
+
raise
|
| 151 |
+
|
| 152 |
+
async def find_government_spending_data(
|
| 153 |
+
self,
|
| 154 |
+
year: Optional[int] = None,
|
| 155 |
+
state: Optional[str] = None,
|
| 156 |
+
city: Optional[str] = None,
|
| 157 |
+
) -> List[Dataset]:
|
| 158 |
+
"""
|
| 159 |
+
Find datasets related to government spending.
|
| 160 |
+
|
| 161 |
+
Args:
|
| 162 |
+
year: Filter by specific year
|
| 163 |
+
state: Filter by state (e.g., "SP", "RJ")
|
| 164 |
+
city: Filter by city name
|
| 165 |
+
|
| 166 |
+
Returns:
|
| 167 |
+
List of relevant datasets
|
| 168 |
+
"""
|
| 169 |
+
# Build search query
|
| 170 |
+
query_parts = ["gastos", "despesas", "pagamentos", "execução orçamentária"]
|
| 171 |
+
|
| 172 |
+
if year:
|
| 173 |
+
query_parts.append(str(year))
|
| 174 |
+
if state:
|
| 175 |
+
query_parts.append(state)
|
| 176 |
+
if city:
|
| 177 |
+
query_parts.append(city)
|
| 178 |
+
|
| 179 |
+
query = " ".join(query_parts)
|
| 180 |
+
|
| 181 |
+
# Search for datasets
|
| 182 |
+
result = await self.search_transparency_datasets(
|
| 183 |
+
keywords=[query],
|
| 184 |
+
data_format="csv", # Prefer CSV for analysis
|
| 185 |
+
limit=50,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# Filter results by relevance
|
| 189 |
+
relevant_datasets = []
|
| 190 |
+
for dataset in result.results:
|
| 191 |
+
# Check if dataset is relevant based on title and description
|
| 192 |
+
title_lower = dataset.title.lower()
|
| 193 |
+
notes_lower = (dataset.notes or "").lower()
|
| 194 |
+
|
| 195 |
+
if any(term in title_lower or term in notes_lower
|
| 196 |
+
for term in ["gasto", "despesa", "pagamento", "execução"]):
|
| 197 |
+
relevant_datasets.append(dataset)
|
| 198 |
+
|
| 199 |
+
return relevant_datasets
|
| 200 |
+
|
| 201 |
+
async def find_procurement_data(
|
| 202 |
+
self,
|
| 203 |
+
organization: Optional[str] = None,
|
| 204 |
+
modality: Optional[str] = None,
|
| 205 |
+
) -> List[Dataset]:
|
| 206 |
+
"""
|
| 207 |
+
Find datasets related to public procurement and contracts.
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
organization: Filter by organization
|
| 211 |
+
modality: Procurement modality (e.g., "pregão", "concorrência")
|
| 212 |
+
|
| 213 |
+
Returns:
|
| 214 |
+
List of procurement-related datasets
|
| 215 |
+
"""
|
| 216 |
+
keywords = ["licitação", "contratos", "pregão", "compras públicas"]
|
| 217 |
+
if modality:
|
| 218 |
+
keywords.append(modality)
|
| 219 |
+
|
| 220 |
+
result = await self.search_transparency_datasets(
|
| 221 |
+
keywords=keywords,
|
| 222 |
+
organization=organization,
|
| 223 |
+
limit=30,
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
return result.results
|
| 227 |
+
|
| 228 |
+
async def analyze_data_availability(
|
| 229 |
+
self,
|
| 230 |
+
topic: str,
|
| 231 |
+
) -> Dict[str, Any]:
|
| 232 |
+
"""
|
| 233 |
+
Analyze what data is available for a specific topic.
|
| 234 |
+
|
| 235 |
+
Args:
|
| 236 |
+
topic: Topic to analyze (e.g., "educação", "saúde", "segurança")
|
| 237 |
+
|
| 238 |
+
Returns:
|
| 239 |
+
Analysis of available data including formats, organizations, and coverage
|
| 240 |
+
"""
|
| 241 |
+
# Search for topic-related datasets
|
| 242 |
+
result = await self.search_transparency_datasets(
|
| 243 |
+
keywords=[topic],
|
| 244 |
+
limit=100,
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
# Analyze results
|
| 248 |
+
analysis = {
|
| 249 |
+
"topic": topic,
|
| 250 |
+
"total_datasets": result.count,
|
| 251 |
+
"analyzed_datasets": len(result.results),
|
| 252 |
+
"organizations": {},
|
| 253 |
+
"formats": {},
|
| 254 |
+
"years_covered": set(),
|
| 255 |
+
"geographic_coverage": {
|
| 256 |
+
"federal": 0,
|
| 257 |
+
"state": 0,
|
| 258 |
+
"municipal": 0,
|
| 259 |
+
},
|
| 260 |
+
"update_frequency": {
|
| 261 |
+
"daily": 0,
|
| 262 |
+
"monthly": 0,
|
| 263 |
+
"yearly": 0,
|
| 264 |
+
"unknown": 0,
|
| 265 |
+
},
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
# Process each dataset
|
| 269 |
+
for dataset in result.results:
|
| 270 |
+
# Count by organization
|
| 271 |
+
if dataset.organization:
|
| 272 |
+
org_name = dataset.organization.title
|
| 273 |
+
analysis["organizations"][org_name] = (
|
| 274 |
+
analysis["organizations"].get(org_name, 0) + 1
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
# Count by format
|
| 278 |
+
for resource in dataset.resources:
|
| 279 |
+
if resource.format:
|
| 280 |
+
fmt = resource.format.upper()
|
| 281 |
+
analysis["formats"][fmt] = analysis["formats"].get(fmt, 0) + 1
|
| 282 |
+
|
| 283 |
+
# Extract years from title/description
|
| 284 |
+
import re
|
| 285 |
+
text = f"{dataset.title} {dataset.notes or ''}"
|
| 286 |
+
years = re.findall(r'\b(19|20)\d{2}\b', text)
|
| 287 |
+
analysis["years_covered"].update(years)
|
| 288 |
+
|
| 289 |
+
# Detect geographic coverage
|
| 290 |
+
text_lower = text.lower()
|
| 291 |
+
if any(term in text_lower for term in ["federal", "brasil", "nacional"]):
|
| 292 |
+
analysis["geographic_coverage"]["federal"] += 1
|
| 293 |
+
elif any(term in text_lower for term in ["estado", "estadual", "uf"]):
|
| 294 |
+
analysis["geographic_coverage"]["state"] += 1
|
| 295 |
+
elif any(term in text_lower for term in ["município", "municipal", "cidade"]):
|
| 296 |
+
analysis["geographic_coverage"]["municipal"] += 1
|
| 297 |
+
|
| 298 |
+
# Detect update frequency
|
| 299 |
+
if any(term in text_lower for term in ["diário", "diariamente"]):
|
| 300 |
+
analysis["update_frequency"]["daily"] += 1
|
| 301 |
+
elif any(term in text_lower for term in ["mensal", "mensalmente"]):
|
| 302 |
+
analysis["update_frequency"]["monthly"] += 1
|
| 303 |
+
elif any(term in text_lower for term in ["anual", "anualmente"]):
|
| 304 |
+
analysis["update_frequency"]["yearly"] += 1
|
| 305 |
+
else:
|
| 306 |
+
analysis["update_frequency"]["unknown"] += 1
|
| 307 |
+
|
| 308 |
+
# Convert years set to sorted list
|
| 309 |
+
analysis["years_covered"] = sorted(list(analysis["years_covered"]))
|
| 310 |
+
|
| 311 |
+
# Sort organizations by dataset count
|
| 312 |
+
analysis["organizations"] = dict(
|
| 313 |
+
sorted(
|
| 314 |
+
analysis["organizations"].items(),
|
| 315 |
+
key=lambda x: x[1],
|
| 316 |
+
reverse=True,
|
| 317 |
+
)[:10] # Top 10 organizations
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
return analysis
|
| 321 |
+
|
| 322 |
+
async def get_resource_download_url(self, resource_id: str) -> str:
|
| 323 |
+
"""
|
| 324 |
+
Get the download URL for a specific resource.
|
| 325 |
+
|
| 326 |
+
Args:
|
| 327 |
+
resource_id: Resource identifier
|
| 328 |
+
|
| 329 |
+
Returns:
|
| 330 |
+
Direct download URL
|
| 331 |
+
"""
|
| 332 |
+
try:
|
| 333 |
+
result = await self.client.get_resource(resource_id)
|
| 334 |
+
resource = Resource(**result.get("result", {}))
|
| 335 |
+
return resource.url
|
| 336 |
+
except DadosGovAPIError as e:
|
| 337 |
+
logger.error(f"Error getting resource {resource_id}: {e}")
|
| 338 |
+
raise
|
| 339 |
+
|
| 340 |
+
async def list_government_organizations(self) -> List[Organization]:
|
| 341 |
+
"""
|
| 342 |
+
List all government organizations that publish open data.
|
| 343 |
+
|
| 344 |
+
Returns:
|
| 345 |
+
List of organizations sorted by dataset count
|
| 346 |
+
"""
|
| 347 |
+
# Check cache
|
| 348 |
+
cache_key = "dados_gov:organizations"
|
| 349 |
+
cached_orgs = await self.cache.get(cache_key)
|
| 350 |
+
if cached_orgs:
|
| 351 |
+
return [Organization(**org) for org in cached_orgs]
|
| 352 |
+
|
| 353 |
+
try:
|
| 354 |
+
# Get organizations
|
| 355 |
+
result = await self.client.list_organizations()
|
| 356 |
+
organizations = [
|
| 357 |
+
Organization(**org)
|
| 358 |
+
for org in result.get("result", [])
|
| 359 |
+
]
|
| 360 |
+
|
| 361 |
+
# Sort by package count
|
| 362 |
+
organizations.sort(
|
| 363 |
+
key=lambda x: x.package_count or 0,
|
| 364 |
+
reverse=True,
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
# Cache result
|
| 368 |
+
await self.cache.set(
|
| 369 |
+
cache_key,
|
| 370 |
+
[org.model_dump() for org in organizations],
|
| 371 |
+
ttl=CacheTTL.LONG,
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
return organizations
|
| 375 |
+
|
| 376 |
+
except DadosGovAPIError as e:
|
| 377 |
+
logger.error(f"Error listing organizations: {e}")
|
| 378 |
+
raise
|