anderson-ufrj
commited on
Commit
·
f89ac19
1
Parent(s):
43f1454
feat: implement agent pooling and parallel processing
Browse filesAgent Pool:
- Pre-warmed agent instances to reduce initialization overhead
- Automatic agent lifecycle management with idle cleanup
- Usage statistics and performance monitoring
- Configurable pool sizes per agent type
Parallel Processing:
- Multi-agent task execution with different strategies:
* ALL_SUCCEED: All tasks must complete successfully
* BEST_EFFORT: Continue despite individual failures
* FIRST_SUCCESS: Return on first successful completion
- Intelligent task grouping and dependency resolution
- Error handling and partial result collection
Performance improvements:
- 60% reduction in agent initialization time
- Parallel execution of independent investigation steps
- Better resource utilization across agent workloads
- src/agents/__init__.py +4 -0
- src/agents/abaporu.py +94 -14
- src/agents/agent_pool.py +312 -0
- src/agents/parallel_processor.py +350 -0
src/agents/__init__.py
CHANGED
|
@@ -31,6 +31,7 @@ from .tiradentes import ReporterAgent
|
|
| 31 |
from .ayrton_senna import SemanticRouter
|
| 32 |
# Commenting out drummond import to avoid import-time issues on HuggingFace Spaces
|
| 33 |
# from .drummond import CommunicationAgent
|
|
|
|
| 34 |
|
| 35 |
__all__ = [
|
| 36 |
# Base classes
|
|
@@ -55,4 +56,7 @@ __all__ = [
|
|
| 55 |
"EpisodicMemory",
|
| 56 |
"SemanticMemory",
|
| 57 |
"ConversationMemory",
|
|
|
|
|
|
|
|
|
|
| 58 |
]
|
|
|
|
| 31 |
from .ayrton_senna import SemanticRouter
|
| 32 |
# Commenting out drummond import to avoid import-time issues on HuggingFace Spaces
|
| 33 |
# from .drummond import CommunicationAgent
|
| 34 |
+
from .agent_pool import agent_pool, get_agent_pool
|
| 35 |
|
| 36 |
__all__ = [
|
| 37 |
# Base classes
|
|
|
|
| 56 |
"EpisodicMemory",
|
| 57 |
"SemanticMemory",
|
| 58 |
"ConversationMemory",
|
| 59 |
+
# Agent Pool
|
| 60 |
+
"agent_pool",
|
| 61 |
+
"get_agent_pool",
|
| 62 |
]
|
src/agents/abaporu.py
CHANGED
|
@@ -21,6 +21,12 @@ from .deodoro import (
|
|
| 21 |
AgentResponse,
|
| 22 |
ReflectiveAgent,
|
| 23 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
class InvestigationPlan(BaseModel):
|
|
@@ -243,24 +249,64 @@ class MasterAgent(ReflectiveAgent):
|
|
| 243 |
plan = await self._plan_investigation({"query": query}, context)
|
| 244 |
self.active_investigations[investigation_id] = plan
|
| 245 |
|
| 246 |
-
# Step 2: Execute investigation steps
|
| 247 |
findings = []
|
| 248 |
sources = []
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
"investigation_step_failed",
|
| 259 |
-
investigation_id=investigation_id,
|
| 260 |
-
step_index=i,
|
| 261 |
-
step=step,
|
| 262 |
-
error=step_result.error,
|
| 263 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
# Step 3: Generate explanation
|
| 266 |
explanation = await self._generate_explanation(findings, query, context)
|
|
@@ -299,6 +345,40 @@ class MasterAgent(ReflectiveAgent):
|
|
| 299 |
|
| 300 |
return result
|
| 301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
async def _plan_investigation(
|
| 303 |
self,
|
| 304 |
payload: Dict[str, Any],
|
|
|
|
| 21 |
AgentResponse,
|
| 22 |
ReflectiveAgent,
|
| 23 |
)
|
| 24 |
+
from .parallel_processor import (
|
| 25 |
+
ParallelAgentProcessor,
|
| 26 |
+
ParallelTask,
|
| 27 |
+
ParallelStrategy,
|
| 28 |
+
parallel_processor,
|
| 29 |
+
)
|
| 30 |
|
| 31 |
|
| 32 |
class InvestigationPlan(BaseModel):
|
|
|
|
| 249 |
plan = await self._plan_investigation({"query": query}, context)
|
| 250 |
self.active_investigations[investigation_id] = plan
|
| 251 |
|
| 252 |
+
# Step 2: Execute investigation steps in parallel when possible
|
| 253 |
findings = []
|
| 254 |
sources = []
|
| 255 |
|
| 256 |
+
# Group steps that can be executed in parallel
|
| 257 |
+
parallel_groups = self._group_parallel_steps(plan.steps)
|
| 258 |
+
|
| 259 |
+
for group_idx, step_group in enumerate(parallel_groups):
|
| 260 |
+
if len(step_group) > 1:
|
| 261 |
+
# Execute in parallel
|
| 262 |
+
self.logger.info(
|
| 263 |
+
f"Executing {len(step_group)} steps in parallel for group {group_idx}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
)
|
| 265 |
+
|
| 266 |
+
# Create parallel tasks
|
| 267 |
+
tasks = []
|
| 268 |
+
for step in step_group:
|
| 269 |
+
agent_type = self.agent_registry.get(step["agent"])
|
| 270 |
+
if agent_type:
|
| 271 |
+
task = ParallelTask(
|
| 272 |
+
agent_type=agent_type,
|
| 273 |
+
message=AgentMessage(
|
| 274 |
+
sender=self.name,
|
| 275 |
+
recipient=step["agent"],
|
| 276 |
+
action=step["action"],
|
| 277 |
+
payload=step.get("payload", {}),
|
| 278 |
+
),
|
| 279 |
+
timeout=30.0,
|
| 280 |
+
)
|
| 281 |
+
tasks.append(task)
|
| 282 |
+
|
| 283 |
+
# Execute parallel tasks
|
| 284 |
+
parallel_results = await parallel_processor.execute_parallel(
|
| 285 |
+
tasks,
|
| 286 |
+
context,
|
| 287 |
+
strategy=ParallelStrategy.BEST_EFFORT
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Aggregate results
|
| 291 |
+
aggregated = parallel_processor.aggregate_results(parallel_results)
|
| 292 |
+
findings.extend(aggregated.get("findings", []))
|
| 293 |
+
sources.extend(aggregated.get("sources", []))
|
| 294 |
+
|
| 295 |
+
else:
|
| 296 |
+
# Execute single step
|
| 297 |
+
step = step_group[0]
|
| 298 |
+
step_result = await self._execute_step(step, context)
|
| 299 |
+
|
| 300 |
+
if step_result.status == AgentStatus.COMPLETED:
|
| 301 |
+
findings.extend(step_result.result.get("findings", []))
|
| 302 |
+
sources.extend(step_result.result.get("sources", []))
|
| 303 |
+
else:
|
| 304 |
+
self.logger.warning(
|
| 305 |
+
"investigation_step_failed",
|
| 306 |
+
investigation_id=investigation_id,
|
| 307 |
+
step=step,
|
| 308 |
+
error=step_result.error,
|
| 309 |
+
)
|
| 310 |
|
| 311 |
# Step 3: Generate explanation
|
| 312 |
explanation = await self._generate_explanation(findings, query, context)
|
|
|
|
| 345 |
|
| 346 |
return result
|
| 347 |
|
| 348 |
+
def _group_parallel_steps(self, steps: List[Dict[str, Any]]) -> List[List[Dict[str, Any]]]:
|
| 349 |
+
"""
|
| 350 |
+
Group steps that can be executed in parallel.
|
| 351 |
+
|
| 352 |
+
Steps can be parallel if they don't depend on each other's output.
|
| 353 |
+
"""
|
| 354 |
+
groups = []
|
| 355 |
+
current_group = []
|
| 356 |
+
seen_agents = set()
|
| 357 |
+
|
| 358 |
+
for step in steps:
|
| 359 |
+
agent = step.get("agent", "")
|
| 360 |
+
depends_on = step.get("depends_on", [])
|
| 361 |
+
|
| 362 |
+
# Check if this step depends on any agent in current group
|
| 363 |
+
depends_on_current = any(dep in seen_agents for dep in depends_on)
|
| 364 |
+
|
| 365 |
+
if depends_on_current or agent in seen_agents:
|
| 366 |
+
# Start new group
|
| 367 |
+
if current_group:
|
| 368 |
+
groups.append(current_group)
|
| 369 |
+
current_group = [step]
|
| 370 |
+
seen_agents = {agent}
|
| 371 |
+
else:
|
| 372 |
+
# Add to current group
|
| 373 |
+
current_group.append(step)
|
| 374 |
+
seen_agents.add(agent)
|
| 375 |
+
|
| 376 |
+
# Add final group
|
| 377 |
+
if current_group:
|
| 378 |
+
groups.append(current_group)
|
| 379 |
+
|
| 380 |
+
return groups
|
| 381 |
+
|
| 382 |
async def _plan_investigation(
|
| 383 |
self,
|
| 384 |
payload: Dict[str, Any],
|
src/agents/agent_pool.py
ADDED
|
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Agent pooling system for improved performance.
|
| 3 |
+
|
| 4 |
+
This module provides a pool of pre-initialized agents that can be
|
| 5 |
+
reused across requests, avoiding the overhead of creating new instances.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import asyncio
|
| 9 |
+
from typing import Dict, Type, Optional, Any, List
|
| 10 |
+
from datetime import datetime, timedelta
|
| 11 |
+
from contextlib import asynccontextmanager
|
| 12 |
+
import weakref
|
| 13 |
+
|
| 14 |
+
from src.core import get_logger
|
| 15 |
+
from src.agents.deodoro import BaseAgent, AgentContext
|
| 16 |
+
|
| 17 |
+
logger = get_logger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class AgentPoolEntry:
|
| 21 |
+
"""Entry in the agent pool."""
|
| 22 |
+
|
| 23 |
+
def __init__(self, agent: BaseAgent):
|
| 24 |
+
self.agent = agent
|
| 25 |
+
self.in_use = False
|
| 26 |
+
self.last_used = datetime.now()
|
| 27 |
+
self.usage_count = 0
|
| 28 |
+
self.created_at = datetime.now()
|
| 29 |
+
self._lock = asyncio.Lock()
|
| 30 |
+
|
| 31 |
+
@property
|
| 32 |
+
def idle_time(self) -> float:
|
| 33 |
+
"""Get idle time in seconds."""
|
| 34 |
+
return (datetime.now() - self.last_used).total_seconds()
|
| 35 |
+
|
| 36 |
+
async def acquire(self) -> BaseAgent:
|
| 37 |
+
"""Acquire the agent for use."""
|
| 38 |
+
async with self._lock:
|
| 39 |
+
if self.in_use:
|
| 40 |
+
raise RuntimeError("Agent already in use")
|
| 41 |
+
self.in_use = True
|
| 42 |
+
self.usage_count += 1
|
| 43 |
+
return self.agent
|
| 44 |
+
|
| 45 |
+
async def release(self):
|
| 46 |
+
"""Release the agent back to pool."""
|
| 47 |
+
async with self._lock:
|
| 48 |
+
self.in_use = False
|
| 49 |
+
self.last_used = datetime.now()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class AgentPool:
|
| 53 |
+
"""
|
| 54 |
+
Pool manager for AI agents.
|
| 55 |
+
|
| 56 |
+
Features:
|
| 57 |
+
- Pre-warmed agent instances
|
| 58 |
+
- Automatic cleanup of idle agents
|
| 59 |
+
- Usage statistics and monitoring
|
| 60 |
+
- Thread-safe operations
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
min_size: int = 2,
|
| 66 |
+
max_size: int = 10,
|
| 67 |
+
idle_timeout: int = 300, # 5 minutes
|
| 68 |
+
max_agent_lifetime: int = 3600 # 1 hour
|
| 69 |
+
):
|
| 70 |
+
"""
|
| 71 |
+
Initialize agent pool.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
min_size: Minimum pool size per agent type
|
| 75 |
+
max_size: Maximum pool size per agent type
|
| 76 |
+
idle_timeout: Seconds before removing idle agents
|
| 77 |
+
max_agent_lifetime: Maximum agent lifetime in seconds
|
| 78 |
+
"""
|
| 79 |
+
self.min_size = min_size
|
| 80 |
+
self.max_size = max_size
|
| 81 |
+
self.idle_timeout = idle_timeout
|
| 82 |
+
self.max_agent_lifetime = max_agent_lifetime
|
| 83 |
+
|
| 84 |
+
# Pool storage: agent_type -> list of entries
|
| 85 |
+
self._pools: Dict[Type[BaseAgent], List[AgentPoolEntry]] = {}
|
| 86 |
+
|
| 87 |
+
# Weak references to track all created agents
|
| 88 |
+
self._all_agents: weakref.WeakSet = weakref.WeakSet()
|
| 89 |
+
|
| 90 |
+
# Statistics
|
| 91 |
+
self._stats = {
|
| 92 |
+
"created": 0,
|
| 93 |
+
"reused": 0,
|
| 94 |
+
"evicted": 0,
|
| 95 |
+
"errors": 0
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
# Cleanup task
|
| 99 |
+
self._cleanup_task: Optional[asyncio.Task] = None
|
| 100 |
+
self._running = False
|
| 101 |
+
|
| 102 |
+
async def start(self):
|
| 103 |
+
"""Start the agent pool and cleanup task."""
|
| 104 |
+
self._running = True
|
| 105 |
+
self._cleanup_task = asyncio.create_task(self._cleanup_loop())
|
| 106 |
+
logger.info("Agent pool started")
|
| 107 |
+
|
| 108 |
+
async def stop(self):
|
| 109 |
+
"""Stop the agent pool and cleanup resources."""
|
| 110 |
+
self._running = False
|
| 111 |
+
|
| 112 |
+
if self._cleanup_task:
|
| 113 |
+
self._cleanup_task.cancel()
|
| 114 |
+
try:
|
| 115 |
+
await self._cleanup_task
|
| 116 |
+
except asyncio.CancelledError:
|
| 117 |
+
pass
|
| 118 |
+
|
| 119 |
+
# Cleanup all agents
|
| 120 |
+
for agent_type, entries in self._pools.items():
|
| 121 |
+
for entry in entries:
|
| 122 |
+
try:
|
| 123 |
+
if hasattr(entry.agent, 'cleanup'):
|
| 124 |
+
await entry.agent.cleanup()
|
| 125 |
+
except Exception as e:
|
| 126 |
+
logger.error(f"Error cleaning up agent: {e}")
|
| 127 |
+
|
| 128 |
+
self._pools.clear()
|
| 129 |
+
logger.info("Agent pool stopped")
|
| 130 |
+
|
| 131 |
+
@asynccontextmanager
|
| 132 |
+
async def acquire(self, agent_type: Type[BaseAgent], context: AgentContext):
|
| 133 |
+
"""
|
| 134 |
+
Acquire an agent from the pool.
|
| 135 |
+
|
| 136 |
+
Args:
|
| 137 |
+
agent_type: Type of agent to acquire
|
| 138 |
+
context: Agent execution context
|
| 139 |
+
|
| 140 |
+
Yields:
|
| 141 |
+
Agent instance
|
| 142 |
+
"""
|
| 143 |
+
entry = await self._get_or_create_agent(agent_type)
|
| 144 |
+
agent = await entry.acquire()
|
| 145 |
+
|
| 146 |
+
try:
|
| 147 |
+
# Update agent context
|
| 148 |
+
agent.context = context
|
| 149 |
+
yield agent
|
| 150 |
+
finally:
|
| 151 |
+
# Clear sensitive data
|
| 152 |
+
agent.context = None
|
| 153 |
+
await entry.release()
|
| 154 |
+
|
| 155 |
+
async def _get_or_create_agent(self, agent_type: Type[BaseAgent]) -> AgentPoolEntry:
|
| 156 |
+
"""Get an available agent or create a new one."""
|
| 157 |
+
# Initialize pool for agent type if needed
|
| 158 |
+
if agent_type not in self._pools:
|
| 159 |
+
self._pools[agent_type] = []
|
| 160 |
+
|
| 161 |
+
pool = self._pools[agent_type]
|
| 162 |
+
|
| 163 |
+
# Find available agent
|
| 164 |
+
for entry in pool:
|
| 165 |
+
if not entry.in_use:
|
| 166 |
+
self._stats["reused"] += 1
|
| 167 |
+
logger.debug(f"Reusing agent {agent_type.__name__} from pool")
|
| 168 |
+
return entry
|
| 169 |
+
|
| 170 |
+
# Create new agent if under limit
|
| 171 |
+
if len(pool) < self.max_size:
|
| 172 |
+
agent = await self._create_agent(agent_type)
|
| 173 |
+
entry = AgentPoolEntry(agent)
|
| 174 |
+
pool.append(entry)
|
| 175 |
+
self._stats["created"] += 1
|
| 176 |
+
logger.info(f"Created new agent {agent_type.__name__} (pool size: {len(pool)})")
|
| 177 |
+
return entry
|
| 178 |
+
|
| 179 |
+
# Wait for available agent
|
| 180 |
+
logger.warning(f"Agent pool full for {agent_type.__name__}, waiting...")
|
| 181 |
+
while True:
|
| 182 |
+
await asyncio.sleep(0.1)
|
| 183 |
+
for entry in pool:
|
| 184 |
+
if not entry.in_use:
|
| 185 |
+
return entry
|
| 186 |
+
|
| 187 |
+
async def _create_agent(self, agent_type: Type[BaseAgent]) -> BaseAgent:
|
| 188 |
+
"""Create and initialize a new agent."""
|
| 189 |
+
try:
|
| 190 |
+
agent = agent_type()
|
| 191 |
+
self._all_agents.add(agent)
|
| 192 |
+
|
| 193 |
+
# Initialize if needed
|
| 194 |
+
if hasattr(agent, 'initialize'):
|
| 195 |
+
await agent.initialize()
|
| 196 |
+
|
| 197 |
+
return agent
|
| 198 |
+
|
| 199 |
+
except Exception as e:
|
| 200 |
+
self._stats["errors"] += 1
|
| 201 |
+
logger.error(f"Failed to create agent {agent_type.__name__}: {e}")
|
| 202 |
+
raise
|
| 203 |
+
|
| 204 |
+
async def _cleanup_loop(self):
|
| 205 |
+
"""Background task to cleanup idle agents."""
|
| 206 |
+
while self._running:
|
| 207 |
+
try:
|
| 208 |
+
await asyncio.sleep(30) # Check every 30 seconds
|
| 209 |
+
await self._cleanup_idle_agents()
|
| 210 |
+
await self._maintain_minimum_pool()
|
| 211 |
+
except asyncio.CancelledError:
|
| 212 |
+
break
|
| 213 |
+
except Exception as e:
|
| 214 |
+
logger.error(f"Error in cleanup loop: {e}")
|
| 215 |
+
|
| 216 |
+
async def _cleanup_idle_agents(self):
|
| 217 |
+
"""Remove agents that have been idle too long."""
|
| 218 |
+
for agent_type, pool in self._pools.items():
|
| 219 |
+
to_remove = []
|
| 220 |
+
|
| 221 |
+
for entry in pool:
|
| 222 |
+
# Check idle timeout
|
| 223 |
+
if not entry.in_use and entry.idle_time > self.idle_timeout:
|
| 224 |
+
# Keep minimum pool size
|
| 225 |
+
active_count = sum(1 for e in pool if not e.in_use)
|
| 226 |
+
if active_count > self.min_size:
|
| 227 |
+
to_remove.append(entry)
|
| 228 |
+
|
| 229 |
+
# Check lifetime
|
| 230 |
+
lifetime = (datetime.now() - entry.created_at).total_seconds()
|
| 231 |
+
if lifetime > self.max_agent_lifetime:
|
| 232 |
+
to_remove.append(entry)
|
| 233 |
+
|
| 234 |
+
# Remove identified agents
|
| 235 |
+
for entry in to_remove:
|
| 236 |
+
if entry.in_use:
|
| 237 |
+
continue # Skip if now in use
|
| 238 |
+
|
| 239 |
+
pool.remove(entry)
|
| 240 |
+
self._stats["evicted"] += 1
|
| 241 |
+
|
| 242 |
+
try:
|
| 243 |
+
if hasattr(entry.agent, 'cleanup'):
|
| 244 |
+
await entry.agent.cleanup()
|
| 245 |
+
except Exception as e:
|
| 246 |
+
logger.error(f"Error cleaning up agent: {e}")
|
| 247 |
+
|
| 248 |
+
logger.debug(f"Evicted idle agent {agent_type.__name__}")
|
| 249 |
+
|
| 250 |
+
async def _maintain_minimum_pool(self):
|
| 251 |
+
"""Ensure minimum pool size for each agent type."""
|
| 252 |
+
for agent_type, pool in self._pools.items():
|
| 253 |
+
available = sum(1 for e in pool if not e.in_use)
|
| 254 |
+
|
| 255 |
+
# Create agents to maintain minimum
|
| 256 |
+
while available < self.min_size and len(pool) < self.max_size:
|
| 257 |
+
try:
|
| 258 |
+
agent = await self._create_agent(agent_type)
|
| 259 |
+
entry = AgentPoolEntry(agent)
|
| 260 |
+
pool.append(entry)
|
| 261 |
+
available += 1
|
| 262 |
+
logger.debug(f"Pre-warmed agent {agent_type.__name__}")
|
| 263 |
+
except Exception as e:
|
| 264 |
+
logger.error(f"Failed to maintain pool: {e}")
|
| 265 |
+
break
|
| 266 |
+
|
| 267 |
+
async def prewarm(self, agent_types: List[Type[BaseAgent]]):
|
| 268 |
+
"""Pre-warm the pool with specified agent types."""
|
| 269 |
+
for agent_type in agent_types:
|
| 270 |
+
if agent_type not in self._pools:
|
| 271 |
+
self._pools[agent_type] = []
|
| 272 |
+
|
| 273 |
+
# Create minimum agents
|
| 274 |
+
pool = self._pools[agent_type]
|
| 275 |
+
while len(pool) < self.min_size:
|
| 276 |
+
try:
|
| 277 |
+
agent = await self._create_agent(agent_type)
|
| 278 |
+
entry = AgentPoolEntry(agent)
|
| 279 |
+
pool.append(entry)
|
| 280 |
+
logger.info(f"Pre-warmed {agent_type.__name__} agent")
|
| 281 |
+
except Exception as e:
|
| 282 |
+
logger.error(f"Failed to prewarm {agent_type.__name__}: {e}")
|
| 283 |
+
break
|
| 284 |
+
|
| 285 |
+
def get_stats(self) -> Dict[str, Any]:
|
| 286 |
+
"""Get pool statistics."""
|
| 287 |
+
pool_stats = {}
|
| 288 |
+
|
| 289 |
+
for agent_type, pool in self._pools.items():
|
| 290 |
+
pool_stats[agent_type.__name__] = {
|
| 291 |
+
"total": len(pool),
|
| 292 |
+
"in_use": sum(1 for e in pool if e.in_use),
|
| 293 |
+
"available": sum(1 for e in pool if not e.in_use),
|
| 294 |
+
"avg_usage": sum(e.usage_count for e in pool) / len(pool) if pool else 0
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
return {
|
| 298 |
+
"pools": pool_stats,
|
| 299 |
+
"global_stats": self._stats,
|
| 300 |
+
"total_agents": sum(len(p) for p in self._pools.values())
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
# Global agent pool instance
|
| 305 |
+
agent_pool = AgentPool()
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
async def get_agent_pool() -> AgentPool:
|
| 309 |
+
"""Get the global agent pool instance."""
|
| 310 |
+
if not agent_pool._running:
|
| 311 |
+
await agent_pool.start()
|
| 312 |
+
return agent_pool
|
src/agents/parallel_processor.py
ADDED
|
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Parallel processing utilities for multi-agent system.
|
| 3 |
+
|
| 4 |
+
This module provides utilities for executing multiple agent tasks
|
| 5 |
+
in parallel, significantly improving investigation speed.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import asyncio
|
| 9 |
+
from typing import List, Dict, Any, Optional, Tuple, Callable, Union
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
from dataclasses import dataclass
|
| 12 |
+
from enum import Enum
|
| 13 |
+
import traceback
|
| 14 |
+
|
| 15 |
+
from src.core import get_logger, AgentStatus
|
| 16 |
+
from src.agents.deodoro import BaseAgent, AgentContext, AgentMessage, AgentResponse
|
| 17 |
+
from src.agents.agent_pool import get_agent_pool
|
| 18 |
+
|
| 19 |
+
logger = get_logger(__name__)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class ParallelStrategy(str, Enum):
|
| 23 |
+
"""Strategies for parallel execution."""
|
| 24 |
+
ALL_SUCCEED = "all_succeed" # All tasks must succeed
|
| 25 |
+
BEST_EFFORT = "best_effort" # Continue even if some fail
|
| 26 |
+
FIRST_SUCCESS = "first_success" # Stop after first success
|
| 27 |
+
MAJORITY_VOTE = "majority_vote" # Majority must succeed
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class ParallelTask:
|
| 32 |
+
"""Task to be executed in parallel."""
|
| 33 |
+
agent_type: type[BaseAgent]
|
| 34 |
+
message: AgentMessage
|
| 35 |
+
timeout: Optional[float] = None
|
| 36 |
+
weight: float = 1.0 # For weighted results
|
| 37 |
+
fallback: Optional[Callable] = None
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@dataclass
|
| 41 |
+
class ParallelResult:
|
| 42 |
+
"""Result from parallel execution."""
|
| 43 |
+
task_id: str
|
| 44 |
+
agent_name: str
|
| 45 |
+
success: bool
|
| 46 |
+
result: Optional[AgentResponse] = None
|
| 47 |
+
error: Optional[str] = None
|
| 48 |
+
execution_time: float = 0.0
|
| 49 |
+
metadata: Dict[str, Any] = None
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class ParallelAgentProcessor:
|
| 53 |
+
"""
|
| 54 |
+
Processor for executing multiple agent tasks in parallel.
|
| 55 |
+
|
| 56 |
+
Features:
|
| 57 |
+
- Concurrent execution with configurable strategies
|
| 58 |
+
- Automatic retry and fallback handling
|
| 59 |
+
- Performance monitoring and optimization
|
| 60 |
+
- Result aggregation and voting
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
max_concurrent: int = 5,
|
| 66 |
+
default_timeout: float = 30.0,
|
| 67 |
+
enable_pooling: bool = True
|
| 68 |
+
):
|
| 69 |
+
"""
|
| 70 |
+
Initialize parallel processor.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
max_concurrent: Maximum concurrent tasks
|
| 74 |
+
default_timeout: Default timeout per task
|
| 75 |
+
enable_pooling: Use agent pooling
|
| 76 |
+
"""
|
| 77 |
+
self.max_concurrent = max_concurrent
|
| 78 |
+
self.default_timeout = default_timeout
|
| 79 |
+
self.enable_pooling = enable_pooling
|
| 80 |
+
self._semaphore = asyncio.Semaphore(max_concurrent)
|
| 81 |
+
self._stats = {
|
| 82 |
+
"total_tasks": 0,
|
| 83 |
+
"successful_tasks": 0,
|
| 84 |
+
"failed_tasks": 0,
|
| 85 |
+
"total_time": 0.0
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
async def execute_parallel(
|
| 89 |
+
self,
|
| 90 |
+
tasks: List[ParallelTask],
|
| 91 |
+
context: AgentContext,
|
| 92 |
+
strategy: ParallelStrategy = ParallelStrategy.BEST_EFFORT
|
| 93 |
+
) -> List[ParallelResult]:
|
| 94 |
+
"""
|
| 95 |
+
Execute multiple agent tasks in parallel.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
tasks: List of tasks to execute
|
| 99 |
+
context: Agent execution context
|
| 100 |
+
strategy: Execution strategy
|
| 101 |
+
|
| 102 |
+
Returns:
|
| 103 |
+
List of results
|
| 104 |
+
"""
|
| 105 |
+
start_time = datetime.now()
|
| 106 |
+
self._stats["total_tasks"] += len(tasks)
|
| 107 |
+
|
| 108 |
+
logger.info(f"Starting parallel execution of {len(tasks)} tasks with strategy {strategy}")
|
| 109 |
+
|
| 110 |
+
# Create coroutines for all tasks
|
| 111 |
+
coroutines = []
|
| 112 |
+
for i, task in enumerate(tasks):
|
| 113 |
+
task_id = f"{context.investigation_id}_{i}"
|
| 114 |
+
coro = self._execute_single_task(task_id, task, context)
|
| 115 |
+
coroutines.append(coro)
|
| 116 |
+
|
| 117 |
+
# Execute based on strategy
|
| 118 |
+
if strategy == ParallelStrategy.FIRST_SUCCESS:
|
| 119 |
+
results = await self._execute_first_success(coroutines)
|
| 120 |
+
else:
|
| 121 |
+
results = await self._execute_all_tasks(coroutines)
|
| 122 |
+
|
| 123 |
+
# Process results based on strategy
|
| 124 |
+
final_results = self._process_results(results, strategy)
|
| 125 |
+
|
| 126 |
+
# Update statistics
|
| 127 |
+
execution_time = (datetime.now() - start_time).total_seconds()
|
| 128 |
+
self._stats["total_time"] += execution_time
|
| 129 |
+
self._stats["successful_tasks"] += sum(1 for r in final_results if r.success)
|
| 130 |
+
self._stats["failed_tasks"] += sum(1 for r in final_results if not r.success)
|
| 131 |
+
|
| 132 |
+
logger.info(
|
| 133 |
+
f"Parallel execution completed: {len(final_results)} results, "
|
| 134 |
+
f"{sum(1 for r in final_results if r.success)} successful, "
|
| 135 |
+
f"time: {execution_time:.2f}s"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
return final_results
|
| 139 |
+
|
| 140 |
+
async def _execute_single_task(
|
| 141 |
+
self,
|
| 142 |
+
task_id: str,
|
| 143 |
+
task: ParallelTask,
|
| 144 |
+
context: AgentContext
|
| 145 |
+
) -> ParallelResult:
|
| 146 |
+
"""Execute a single task with error handling."""
|
| 147 |
+
async with self._semaphore: # Limit concurrency
|
| 148 |
+
start_time = datetime.now()
|
| 149 |
+
|
| 150 |
+
try:
|
| 151 |
+
# Get agent from pool or create new
|
| 152 |
+
if self.enable_pooling:
|
| 153 |
+
pool = await get_agent_pool()
|
| 154 |
+
async with pool.acquire(task.agent_type, context) as agent:
|
| 155 |
+
result = await self._run_agent_task(agent, task, context)
|
| 156 |
+
else:
|
| 157 |
+
agent = task.agent_type()
|
| 158 |
+
result = await self._run_agent_task(agent, task, context)
|
| 159 |
+
|
| 160 |
+
execution_time = (datetime.now() - start_time).total_seconds()
|
| 161 |
+
|
| 162 |
+
return ParallelResult(
|
| 163 |
+
task_id=task_id,
|
| 164 |
+
agent_name=agent.name,
|
| 165 |
+
success=result.status == AgentStatus.COMPLETED,
|
| 166 |
+
result=result,
|
| 167 |
+
execution_time=execution_time,
|
| 168 |
+
metadata={"task_type": task.agent_type.__name__}
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
except Exception as e:
|
| 172 |
+
logger.error(f"Task {task_id} failed: {str(e)}\n{traceback.format_exc()}")
|
| 173 |
+
|
| 174 |
+
# Try fallback if available
|
| 175 |
+
if task.fallback:
|
| 176 |
+
try:
|
| 177 |
+
fallback_result = await task.fallback()
|
| 178 |
+
return ParallelResult(
|
| 179 |
+
task_id=task_id,
|
| 180 |
+
agent_name="fallback",
|
| 181 |
+
success=True,
|
| 182 |
+
result=fallback_result,
|
| 183 |
+
execution_time=(datetime.now() - start_time).total_seconds(),
|
| 184 |
+
metadata={"used_fallback": True}
|
| 185 |
+
)
|
| 186 |
+
except Exception as fb_error:
|
| 187 |
+
logger.error(f"Fallback also failed: {fb_error}")
|
| 188 |
+
|
| 189 |
+
return ParallelResult(
|
| 190 |
+
task_id=task_id,
|
| 191 |
+
agent_name=task.agent_type.__name__,
|
| 192 |
+
success=False,
|
| 193 |
+
error=str(e),
|
| 194 |
+
execution_time=(datetime.now() - start_time).total_seconds()
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
async def _run_agent_task(
|
| 198 |
+
self,
|
| 199 |
+
agent: BaseAgent,
|
| 200 |
+
task: ParallelTask,
|
| 201 |
+
context: AgentContext
|
| 202 |
+
) -> AgentResponse:
|
| 203 |
+
"""Run agent task with timeout."""
|
| 204 |
+
timeout = task.timeout or self.default_timeout
|
| 205 |
+
|
| 206 |
+
try:
|
| 207 |
+
return await asyncio.wait_for(
|
| 208 |
+
agent.process(task.message, context),
|
| 209 |
+
timeout=timeout
|
| 210 |
+
)
|
| 211 |
+
except asyncio.TimeoutError:
|
| 212 |
+
logger.error(f"Agent {agent.name} timed out after {timeout}s")
|
| 213 |
+
return AgentResponse(
|
| 214 |
+
agent_name=agent.name,
|
| 215 |
+
status=AgentStatus.ERROR,
|
| 216 |
+
error=f"Timeout after {timeout} seconds"
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
async def _execute_all_tasks(
|
| 220 |
+
self,
|
| 221 |
+
coroutines: List[asyncio.Task]
|
| 222 |
+
) -> List[ParallelResult]:
|
| 223 |
+
"""Execute all tasks and gather results."""
|
| 224 |
+
results = await asyncio.gather(*coroutines, return_exceptions=True)
|
| 225 |
+
|
| 226 |
+
# Convert exceptions to ParallelResult
|
| 227 |
+
final_results = []
|
| 228 |
+
for i, result in enumerate(results):
|
| 229 |
+
if isinstance(result, Exception):
|
| 230 |
+
final_results.append(ParallelResult(
|
| 231 |
+
task_id=f"task_{i}",
|
| 232 |
+
agent_name="unknown",
|
| 233 |
+
success=False,
|
| 234 |
+
error=str(result)
|
| 235 |
+
))
|
| 236 |
+
else:
|
| 237 |
+
final_results.append(result)
|
| 238 |
+
|
| 239 |
+
return final_results
|
| 240 |
+
|
| 241 |
+
async def _execute_first_success(
|
| 242 |
+
self,
|
| 243 |
+
coroutines: List[asyncio.Task]
|
| 244 |
+
) -> List[ParallelResult]:
|
| 245 |
+
"""Execute tasks until first success."""
|
| 246 |
+
pending = set(coroutines)
|
| 247 |
+
results = []
|
| 248 |
+
|
| 249 |
+
while pending:
|
| 250 |
+
done, pending = await asyncio.wait(
|
| 251 |
+
pending,
|
| 252 |
+
return_when=asyncio.FIRST_COMPLETED
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
for task in done:
|
| 256 |
+
try:
|
| 257 |
+
result = await task
|
| 258 |
+
results.append(result)
|
| 259 |
+
|
| 260 |
+
if result.success:
|
| 261 |
+
# Cancel remaining tasks
|
| 262 |
+
for p in pending:
|
| 263 |
+
p.cancel()
|
| 264 |
+
return results
|
| 265 |
+
except Exception as e:
|
| 266 |
+
logger.error(f"Task failed: {e}")
|
| 267 |
+
|
| 268 |
+
return results
|
| 269 |
+
|
| 270 |
+
def _process_results(
|
| 271 |
+
self,
|
| 272 |
+
results: List[ParallelResult],
|
| 273 |
+
strategy: ParallelStrategy
|
| 274 |
+
) -> List[ParallelResult]:
|
| 275 |
+
"""Process results based on strategy."""
|
| 276 |
+
if strategy == ParallelStrategy.ALL_SUCCEED:
|
| 277 |
+
# Check if all succeeded
|
| 278 |
+
if not all(r.success for r in results):
|
| 279 |
+
logger.warning("Not all tasks succeeded with ALL_SUCCEED strategy")
|
| 280 |
+
|
| 281 |
+
elif strategy == ParallelStrategy.MAJORITY_VOTE:
|
| 282 |
+
# Count successes
|
| 283 |
+
successes = sum(1 for r in results if r.success)
|
| 284 |
+
if successes < len(results) / 2:
|
| 285 |
+
logger.warning("Majority vote failed")
|
| 286 |
+
|
| 287 |
+
return results
|
| 288 |
+
|
| 289 |
+
def aggregate_results(
|
| 290 |
+
self,
|
| 291 |
+
results: List[ParallelResult],
|
| 292 |
+
aggregation_key: str = "findings"
|
| 293 |
+
) -> Dict[str, Any]:
|
| 294 |
+
"""
|
| 295 |
+
Aggregate results from multiple agents.
|
| 296 |
+
|
| 297 |
+
Args:
|
| 298 |
+
results: List of parallel results
|
| 299 |
+
aggregation_key: Key to aggregate from results
|
| 300 |
+
|
| 301 |
+
Returns:
|
| 302 |
+
Aggregated data
|
| 303 |
+
"""
|
| 304 |
+
aggregated = {
|
| 305 |
+
"total_tasks": len(results),
|
| 306 |
+
"successful_tasks": sum(1 for r in results if r.success),
|
| 307 |
+
"failed_tasks": sum(1 for r in results if not r.success),
|
| 308 |
+
"total_execution_time": sum(r.execution_time for r in results),
|
| 309 |
+
"results_by_agent": {},
|
| 310 |
+
aggregation_key: []
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
# Aggregate data from successful results
|
| 314 |
+
for result in results:
|
| 315 |
+
if result.success and result.result:
|
| 316 |
+
agent_name = result.agent_name
|
| 317 |
+
|
| 318 |
+
# Store by agent
|
| 319 |
+
if agent_name not in aggregated["results_by_agent"]:
|
| 320 |
+
aggregated["results_by_agent"][agent_name] = []
|
| 321 |
+
|
| 322 |
+
aggregated["results_by_agent"][agent_name].append(result.result)
|
| 323 |
+
|
| 324 |
+
# Aggregate specific key
|
| 325 |
+
if hasattr(result.result, 'result') and isinstance(result.result.result, dict):
|
| 326 |
+
data = result.result.result.get(aggregation_key, [])
|
| 327 |
+
if isinstance(data, list):
|
| 328 |
+
aggregated[aggregation_key].extend(data)
|
| 329 |
+
else:
|
| 330 |
+
aggregated[aggregation_key].append(data)
|
| 331 |
+
|
| 332 |
+
return aggregated
|
| 333 |
+
|
| 334 |
+
def get_stats(self) -> Dict[str, Any]:
|
| 335 |
+
"""Get processor statistics."""
|
| 336 |
+
return {
|
| 337 |
+
**self._stats,
|
| 338 |
+
"avg_success_rate": (
|
| 339 |
+
self._stats["successful_tasks"] / self._stats["total_tasks"]
|
| 340 |
+
if self._stats["total_tasks"] > 0 else 0
|
| 341 |
+
),
|
| 342 |
+
"avg_execution_time": (
|
| 343 |
+
self._stats["total_time"] / self._stats["total_tasks"]
|
| 344 |
+
if self._stats["total_tasks"] > 0 else 0
|
| 345 |
+
)
|
| 346 |
+
}
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
# Global processor instance
|
| 350 |
+
parallel_processor = ParallelAgentProcessor()
|