# πŸ“Š Monitoring & Observability Guide **Author**: Anderson Henrique da Silva **Last Updated**: 2025-09-20 07:28:07 -03 (SΓ£o Paulo, Brazil) ## Overview CidadΓ£o.AI implements a comprehensive observability stack providing real-time insights into system health, performance, and business metrics. ## 🎯 Observability Pillars ### 1. Metrics (Prometheus) - System performance indicators - Business KPIs - Custom application metrics ### 2. Logs (Structured JSON) - Centralized logging - Correlation IDs - Contextual information ### 3. Traces (OpenTelemetry) - Distributed request tracking - Service dependency mapping - Performance bottleneck identification ## πŸ—οΈ Architecture ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Application │────▢│ Prometheus │────▢│ Grafana β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ - Metrics β”‚ β”‚ - Storage β”‚ β”‚ - Dashboards β”‚ β”‚ - Health β”‚ β”‚ - Alerting β”‚ β”‚ - Alerts β”‚ β”‚ - SLO/SLA β”‚ β”‚ - Rules β”‚ β”‚ - Reports β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ## πŸ“ˆ Metrics Implementation ### Business Metrics **Location**: `src/infrastructure/observability/metrics.py` ```python # Agent task execution agent_tasks_total = Counter( 'cidadao_ai_agent_tasks_total', 'Total agent tasks executed', ['agent_name', 'task_type', 'status'] ) # Investigation lifecycle investigations_total = Counter( 'cidadao_ai_investigations_total', 'Total investigations', ['status', 'investigation_type'] ) # Anomaly detection anomalies_detected_total = Counter( 'cidadao_ai_anomalies_detected_total', 'Total anomalies detected', ['anomaly_type', 'severity', 'agent'] ) ``` ### System Metrics ```python # API performance @observe_request( histogram=request_duration_histogram, counter=request_count_counter ) async def api_endpoint(): # Automatic metric collection ``` ### Metric Endpoints - `/health/metrics` - Prometheus format - `/health/metrics/json` - JSON format - `/api/v1/observability/metrics/custom` - Custom metrics ## πŸ” Health Monitoring ### Dependency Health Checks **Location**: `src/infrastructure/health/dependency_checker.py` **Monitored Dependencies**: 1. **Database** - Connection pool, query performance 2. **Redis** - Cache availability, latency 3. **External APIs** - Portal da TransparΓͺncia, LLM services 4. **File System** - Disk space, write permissions **Health Check Features**: - Parallel execution - Configurable timeouts - Retry logic - Trend analysis - Degradation detection ### Health Endpoints ```bash GET /health # Basic health (for load balancers) GET /health/detailed # Comprehensive health report GET /health/dependencies/{name} # Specific dependency health POST /health/check # Trigger manual health check ``` ## πŸ“Š SLA/SLO Monitoring ### SLO Configuration **Location**: `src/infrastructure/monitoring/slo_monitor.py` **Default SLOs**: ```python # API Availability - Target: 99.9% uptime - Time Window: 24 hours - Warning: 98% - Critical: 95% # API Response Time - Target: P95 < 2 seconds - Time Window: 1 hour - Warning: 90% compliance - Critical: 80% compliance # Investigation Success Rate - Target: 95% success - Time Window: 4 hours - Warning: 92% - Critical: 88% # Agent Error Rate - Target: < 1% errors - Time Window: 1 hour - Warning: 0.8% - Critical: 1.5% ``` ### Error Budget Tracking ```python # Automatic error budget calculation error_budget_remaining = 100 - ((100 - current_compliance) / (100 - target)) # Alerts on budget consumption if error_budget_consumed > 80%: alert("High error budget consumption") ``` ### SLO Endpoints ```bash GET /api/v1/monitoring/slo # All SLO status GET /api/v1/monitoring/slo/{name} # Specific SLO POST /api/v1/monitoring/slo # Create SLO GET /api/v1/monitoring/error-budget # Error budget report GET /api/v1/monitoring/alerts/violations # SLO violations ``` ## πŸ“ Structured Logging ### Implementation **Location**: `src/infrastructure/observability/structured_logging.py` **Log Format**: ```json { "timestamp": "2025-09-20T10:28:07.123Z", "level": "INFO", "correlation_id": "uuid-1234-5678", "service": "cidadao-ai", "component": "agent.zumbi", "message": "Anomaly detected", "context": { "investigation_id": "inv-123", "anomaly_type": "price_spike", "confidence": 0.95 } } ``` **Features**: - JSON structured format - Correlation ID propagation - Contextual enrichment - Performance metrics inclusion - Sensitive data masking ## πŸ”— Distributed Tracing ### OpenTelemetry Integration **Location**: `src/infrastructure/observability/tracing.py` **Trace Context**: ```python @trace_operation("investigation.analyze") async def analyze_contracts(contracts): with tracer.start_span("data_validation"): # Automatic span creation ``` **Trace Propagation**: - B3 headers support - W3C Trace Context - Baggage propagation - Custom attributes ### Trace Visualization - Jaeger UI integration - Service dependency graphs - Latency analysis - Error tracking ## 🚨 Alerting System ### Prometheus Alert Rules **Location**: `monitoring/prometheus/rules/cidadao-ai-alerts.yml` **Alert Categories**: #### 1. System Health ```yaml - alert: SystemDown expr: up{job="cidadao-ai-backend"} == 0 for: 30s severity: critical - alert: HighErrorRate expr: error_rate > 5 for: 2m severity: warning ``` #### 2. Infrastructure ```yaml - alert: DatabaseConnectionsCritical expr: db_connections_used / db_connections_total > 0.95 for: 30s severity: critical - alert: CacheHitRateLow expr: cache_hit_rate < 70 for: 5m severity: warning ``` #### 3. Agent Performance ```yaml - alert: AgentTaskFailureHigh expr: agent_error_rate > 10 for: 3m severity: warning - alert: AgentQualityScoreLow expr: agent_quality_score < 0.8 for: 5m severity: warning ``` #### 4. Business Metrics ```yaml - alert: InvestigationSuccessRateLow expr: investigation_success_rate < 90 for: 10m severity: warning - alert: AnomalyDetectionAccuracyLow expr: anomaly_accuracy < 0.85 for: 15m severity: warning ``` ## πŸ“Š Grafana Dashboards ### System Overview Dashboard **Location**: `monitoring/grafana/dashboards/cidadao-ai-overview.json` **Panels**: 1. System health status 2. Active investigations count 3. API response time P95 4. Anomalies detected (24h) 5. Request rate graph 6. Agent tasks performance 7. SLO compliance table 8. Error budget consumption 9. Database connection pool 10. Cache hit rate 11. External API health 12. Investigation success rate 13. Top anomaly types 14. Memory/CPU usage 15. Alert status ### Agent Performance Dashboard **Location**: `monitoring/grafana/dashboards/cidadao-ai-agents.json` **Panels**: 1. Agent task success rate 2. Active agents count 3. Average task duration 4. Reflection iterations 5. Performance by agent type 6. Task duration percentiles 7. Agent status distribution 8. Top performing agents 9. Error distribution 10. Agent-specific metrics 11. Memory usage by agent 12. Communication matrix 13. Quality score trends ## πŸ”§ Monitoring Configuration ### Prometheus Configuration ```yaml global: scrape_interval: 15s evaluation_interval: 15s scrape_configs: - job_name: 'cidadao-ai-backend' static_configs: - targets: ['localhost:8000'] metrics_path: '/health/metrics' ``` ### Grafana Data Sources ```json { "name": "Prometheus", "type": "prometheus", "url": "http://prometheus:9090", "access": "proxy" } ``` ## 🎯 Key Performance Indicators ### Technical KPIs - **Uptime**: Target 99.95% - **API Latency P99**: < 500ms - **Error Rate**: < 0.1% - **Cache Hit Rate**: > 90% - **Agent Success Rate**: > 95% ### Business KPIs - **Investigations/Day**: Track growth - **Anomalies Detected**: Measure effectiveness - **Report Generation Time**: < 30s - **User Satisfaction**: Via feedback metrics ## πŸš€ APM Integration ### Supported Platforms **Location**: `src/infrastructure/apm/` 1. **New Relic** ```python apm_integrations.setup_newrelic( license_key="your-key", app_name="cidadao-ai" ) ``` 2. **Datadog** ```python apm_integrations.setup_datadog( api_key="your-api-key", app_key="your-app-key" ) ``` 3. **Elastic APM** ```python apm_integrations.setup_elastic_apm( server_url="http://apm-server:8200", secret_token="your-token" ) ``` ### APM Features - Performance tracking decorators - Error reporting with context - Custom business metrics - Distributed trace correlation ## πŸ§ͺ Chaos Engineering ### Chaos Experiments **Location**: `src/api/routes/chaos.py` **Available Experiments**: 1. **Latency Injection** - Configurable delays - Probability-based - Auto-expiration 2. **Error Injection** - HTTP error codes - Configurable rate - Multiple error types 3. **Resource Pressure** - Memory consumption - CPU load - Controlled intensity ### Chaos Endpoints ```bash POST /api/v1/chaos/inject/latency POST /api/v1/chaos/inject/errors POST /api/v1/chaos/experiments/memory-pressure POST /api/v1/chaos/experiments/cpu-pressure POST /api/v1/chaos/stop/{experiment} GET /api/v1/chaos/status ``` ## πŸ“ˆ Best Practices 1. **Set Meaningful SLOs**: Based on user expectations 2. **Monitor Business Metrics**: Not just technical ones 3. **Use Correlation IDs**: For request tracing 4. **Alert on Symptoms**: Not causes 5. **Document Runbooks**: For each alert 6. **Regular Reviews**: Of metrics and thresholds 7. **Capacity Planning**: Based on trends ## πŸ” Troubleshooting ### Missing Metrics 1. Check Prometheus scrape configuration 2. Verify metrics endpoint accessibility 3. Review metric registration code ### Alert Fatigue 1. Tune alert thresholds 2. Implement alert grouping 3. Use inhibition rules ### Dashboard Performance 1. Optimize query time ranges 2. Use recording rules 3. Implement caching ## πŸ“š Additional Resources - [Prometheus Best Practices](https://prometheus.io/docs/practices/) - [Grafana Dashboard Guide](https://grafana.com/docs/grafana/latest/dashboards/) - [OpenTelemetry Documentation](https://opentelemetry.io/docs/) - [SRE Workbook](https://sre.google/workbook/) --- For monitoring questions or improvements, contact: Anderson Henrique da Silva