""" Batch API endpoints for processing multiple requests efficiently. This module provides endpoints for batching multiple operations, reducing network overhead and improving throughput. """ from typing import List, Dict, Any, Optional, Union from datetime import datetime import asyncio import uuid from fastapi import APIRouter, Depends, HTTPException, BackgroundTasks from pydantic import BaseModel, Field, validator from src.core import get_logger from src.api.dependencies import get_current_user from src.agents import get_agent_pool, MasterAgent from src.agents.parallel_processor import ( ParallelAgentProcessor, ParallelTask, ParallelStrategy ) from src.services.chat_service_with_cache import chat_service logger = get_logger(__name__) router = APIRouter(prefix="/api/v1/batch", tags=["batch"]) class BatchOperation(BaseModel): """Single operation in a batch request.""" id: str = Field(default_factory=lambda: str(uuid.uuid4())) operation: str = Field(..., description="Operation type") data: Dict[str, Any] = Field(..., description="Operation data") priority: int = Field(default=5, ge=1, le=10) timeout: Optional[float] = Field(default=30.0, ge=1.0, le=300.0) @validator('operation') def validate_operation(cls, v): allowed = ["chat", "investigate", "analyze", "search"] if v not in allowed: raise ValueError(f"Operation must be one of {allowed}") return v class BatchRequest(BaseModel): """Batch request containing multiple operations.""" operations: List[BatchOperation] = Field(..., max_items=100) strategy: ParallelStrategy = Field( default=ParallelStrategy.BEST_EFFORT, description="Execution strategy" ) max_concurrent: int = Field(default=5, ge=1, le=20) return_partial: bool = Field( default=True, description="Return partial results if some operations fail" ) class BatchOperationResult(BaseModel): """Result of a single batch operation.""" id: str operation: str success: bool result: Optional[Dict[str, Any]] = None error: Optional[str] = None execution_time: float timestamp: datetime = Field(default_factory=datetime.utcnow) class BatchResponse(BaseModel): """Response from batch processing.""" batch_id: str total_operations: int successful_operations: int failed_operations: int results: List[BatchOperationResult] total_execution_time: float metadata: Dict[str, Any] = Field(default_factory=dict) # Batch processor instance batch_processor = ParallelAgentProcessor(max_concurrent=10) @router.post("/process", response_model=BatchResponse) async def process_batch( request: BatchRequest, background_tasks: BackgroundTasks, current_user=Depends(get_current_user) ) -> BatchResponse: """ Process multiple operations in a single batch request. Supports operations: - chat: Chat completions - investigate: Full investigations - analyze: Data analysis - search: Search operations Operations are executed in parallel when possible. """ batch_id = str(uuid.uuid4()) start_time = datetime.utcnow() logger.info( f"Processing batch {batch_id} with {len(request.operations)} operations " f"for user {current_user.id}" ) # Sort operations by priority sorted_ops = sorted( request.operations, key=lambda x: x.priority, reverse=True ) # Process operations in parallel tasks = [] for op in sorted_ops: task = asyncio.create_task( _process_single_operation( op, current_user, batch_processor.max_concurrent ) ) tasks.append(task) # Execute with specified concurrency results = [] if request.strategy == ParallelStrategy.FIRST_SUCCESS: # Process until first success for task in asyncio.as_completed(tasks): result = await task results.append(result) if result.success: # Cancel remaining tasks for t in tasks: if not t.done(): t.cancel() break else: # Process all tasks batch_results = await asyncio.gather(*tasks, return_exceptions=True) for i, result in enumerate(batch_results): if isinstance(result, Exception): results.append(BatchOperationResult( id=sorted_ops[i].id, operation=sorted_ops[i].operation, success=False, error=str(result), execution_time=0.0 )) else: results.append(result) # Calculate statistics total_time = (datetime.utcnow() - start_time).total_seconds() successful = sum(1 for r in results if r.success) failed = len(results) - successful # Background cleanup if needed background_tasks.add_task(_cleanup_batch_resources, batch_id) return BatchResponse( batch_id=batch_id, total_operations=len(request.operations), successful_operations=successful, failed_operations=failed, results=results, total_execution_time=total_time, metadata={ "strategy": request.strategy, "user_id": current_user.id, "avg_execution_time": total_time / len(results) if results else 0 } ) async def _process_single_operation( operation: BatchOperation, user: Any, semaphore_limit: int ) -> BatchOperationResult: """Process a single operation with error handling.""" start_time = datetime.utcnow() try: # Route to appropriate handler if operation.operation == "chat": result = await _handle_chat_operation(operation.data, user) elif operation.operation == "investigate": result = await _handle_investigate_operation(operation.data, user) elif operation.operation == "analyze": result = await _handle_analyze_operation(operation.data, user) elif operation.operation == "search": result = await _handle_search_operation(operation.data, user) else: raise ValueError(f"Unknown operation: {operation.operation}") execution_time = (datetime.utcnow() - start_time).total_seconds() return BatchOperationResult( id=operation.id, operation=operation.operation, success=True, result=result, execution_time=execution_time ) except Exception as e: logger.error(f"Batch operation {operation.id} failed: {str(e)}") execution_time = (datetime.utcnow() - start_time).total_seconds() return BatchOperationResult( id=operation.id, operation=operation.operation, success=False, error=str(e), execution_time=execution_time ) async def _handle_chat_operation(data: Dict[str, Any], user: Any) -> Dict[str, Any]: """Handle chat operation.""" message = data.get("message", "") session_id = data.get("session_id", str(uuid.uuid4())) # Get or create session session = await chat_service.get_or_create_session(session_id, user_id=user.id) # Process message response = await chat_service.process_message( session_id=session_id, message=message, user_id=user.id ) return { "session_id": session_id, "response": response.message, "agent": response.agent_name, "confidence": response.confidence } async def _handle_investigate_operation(data: Dict[str, Any], user: Any) -> Dict[str, Any]: """Handle investigation operation.""" query = data.get("query", "") # Get agent pool and master agent pool = await get_agent_pool() # Create investigation context from src.agents.deodoro import AgentContext context = AgentContext( investigation_id=str(uuid.uuid4()), user_id=user.id, data_sources=data.get("data_sources", []) ) # Execute investigation async with pool.acquire(MasterAgent, context) as master: result = await master._investigate({"query": query}, context) return { "investigation_id": result.investigation_id, "findings": result.findings, "confidence": result.confidence_score, "sources": result.sources, "explanation": result.explanation } async def _handle_analyze_operation(data: Dict[str, Any], user: Any) -> Dict[str, Any]: """Handle analysis operation.""" # Simplified for now - extend based on your analysis needs return { "status": "completed", "analysis_type": data.get("type", "general"), "results": { "summary": "Analysis completed successfully", "data": data.get("data", {}) } } async def _handle_search_operation(data: Dict[str, Any], user: Any) -> Dict[str, Any]: """Handle search operation.""" query = data.get("query", "") filters = data.get("filters", {}) # Simplified search - integrate with your search service return { "query": query, "results": [], "total": 0, "filters_applied": filters } async def _cleanup_batch_resources(batch_id: str): """Cleanup any resources used by the batch.""" # Add cleanup logic if needed logger.debug(f"Cleaning up resources for batch {batch_id}") @router.get("/status/{batch_id}") async def get_batch_status( batch_id: str, current_user=Depends(get_current_user) ) -> Dict[str, Any]: """ Get the status of a batch operation. Note: This is a placeholder for async batch processing. Currently all batches are processed synchronously. """ return { "batch_id": batch_id, "status": "completed", "message": "Batch operations are currently processed synchronously" } @router.post("/validate", response_model=Dict[str, Any]) async def validate_batch( request: BatchRequest, current_user=Depends(get_current_user) ) -> Dict[str, Any]: """ Validate a batch request without executing it. Useful for checking if operations are valid before submission. """ validation_results = [] for op in request.operations: is_valid = True errors = [] # Validate operation type if op.operation not in ["chat", "investigate", "analyze", "search"]: is_valid = False errors.append(f"Unknown operation: {op.operation}") # Validate operation data if op.operation == "chat" and "message" not in op.data: is_valid = False errors.append("Chat operation requires 'message' field") elif op.operation == "investigate" and "query" not in op.data: is_valid = False errors.append("Investigate operation requires 'query' field") validation_results.append({ "id": op.id, "operation": op.operation, "valid": is_valid, "errors": errors }) total_valid = sum(1 for v in validation_results if v["valid"]) return { "valid": total_valid == len(request.operations), "total_operations": len(request.operations), "valid_operations": total_valid, "invalid_operations": len(request.operations) - total_valid, "results": validation_results }