# 🚄 Performance Optimization Guide **Author**: Anderson Henrique da Silva **Last Updated**: 2025-09-20 07:28:07 -03 (São Paulo, Brazil) ## Overview This document details the comprehensive performance optimizations implemented in Cidadão.AI Backend to achieve enterprise-grade performance and scalability. ## 🎯 Performance Goals - **API Latency**: P95 < 200ms, P99 < 500ms - **Throughput**: > 10,000 requests/second - **Agent Response Time**: < 2 seconds - **Cache Hit Rate**: > 90% - **Database Query Time**: P90 < 100ms - **Memory Efficiency**: < 2GB per instance ## 🏗️ Optimization Layers ### 1. JSON Serialization (3x Faster) **Implementation**: `src/infrastructure/performance/json_utils.py` ```python # Before: Standard json library import json data = json.dumps(large_object) # ~300ms # After: orjson from src.infrastructure.performance.json_utils import fast_json_dumps data = fast_json_dumps(large_object) # ~100ms ``` **Benefits**: - 3x faster serialization/deserialization - Native datetime support - Automatic numpy/pandas conversion - Lower memory footprint ### 2. Compression Middleware **Implementation**: `src/api/middleware/compression.py` **Features**: - **Brotli**: Best compression for text (11 quality level) - **Gzip**: Fallback compression (9 quality level) - **Smart Detection**: Skip compression for images/videos - **Size Threshold**: Only compress responses > 1KB **Results**: - 70-90% bandwidth reduction - Faster client downloads - Reduced infrastructure costs ### 3. Advanced Caching Strategy **Implementation**: `src/infrastructure/cache/` #### Cache Hierarchy ``` L1 (Memory) → L2 (Redis) → L3 (Database) │ ├─ TTL: 5 min TTL: 1 hr Persistent ├─ Size: 1000 Size: 10K Unlimited └─ Speed: <1ms Speed: <5ms Speed: <50ms ``` #### Cache Stampede Protection - **XFetch Algorithm**: Prevents thundering herd - **Probabilistic Early Expiration**: Smooth cache refresh - **Lock-based Refresh**: Single worker updates cache ### 4. Connection Pooling **Implementation**: `src/infrastructure/http/connection_pool.py` **LLM Providers**: ```python # HTTP/2 multiplexing limits = httpx.Limits( max_keepalive_connections=20, max_connections=100, keepalive_expiry=300.0 ) ``` **Benefits**: - Connection reuse - Reduced handshake overhead - Better resource utilization ### 5. Agent Pool Management **Implementation**: `src/infrastructure/agents/agent_pool.py` **Features**: - **Pre-warmed Instances**: Ready agents in pool - **Lifecycle Management**: Health checks & recycling - **Dynamic Scaling**: Based on load - **Memory Optimization**: Shared resources **Configuration**: ```python AgentPoolConfig( min_size=2, max_size=10, max_idle_time=300, health_check_interval=60 ) ``` ### 6. Parallel Processing **Implementation**: `src/infrastructure/agents/parallel_processor.py` **Strategies**: 1. **MapReduce**: Split work across agents 2. **Pipeline**: Sequential processing stages 3. **Scatter-Gather**: Broadcast and collect 4. **Round-Robin**: Load distribution **Example**: ```python # Process 100 contracts in parallel results = await processor.process_parallel( contracts, strategy="scatter_gather", max_workers=5 ) ``` ### 7. Database Optimizations **Implementation**: `src/infrastructure/database/` **Indexes**: ```sql -- Composite indexes for common queries CREATE INDEX idx_investigations_composite ON investigations(status, user_id, created_at DESC); -- Partial indexes for filtered queries CREATE INDEX idx_active_investigations ON investigations(created_at) WHERE status = 'active'; -- GIN indexes for JSONB CREATE INDEX idx_metadata_gin ON contracts USING gin(metadata); ``` **Query Optimization**: - Query result caching - Prepared statement reuse - Connection pooling (20 base + 30 overflow) - Read replicas for analytics ### 8. GraphQL Performance **Implementation**: `src/api/routes/graphql.py` **Features**: - **Query Depth Limiting**: Max depth 10 - **Query Complexity Analysis**: Max 1000 points - **DataLoader Pattern**: Batch & cache - **Field-level Caching**: Granular control ### 9. WebSocket Optimization **Implementation**: `src/infrastructure/websocket/` **Batching**: ```python BatchingConfig( max_batch_size=50, batch_timeout_ms=100, compression_threshold=1024 ) ``` **Benefits**: - Reduced network overhead - Message compression - Efficient broadcasting ### 10. Event-Driven Architecture **Implementation**: `src/infrastructure/events/` **CQRS Pattern**: - **Commands**: Write operations (async) - **Queries**: Read operations (cached) - **Events**: Redis Streams backbone **Benefits**: - Decoupled components - Better scalability - Event sourcing capability ## 📊 Performance Metrics ### Before Optimizations - API P95 Latency: 800ms - Throughput: 1,200 req/s - Memory Usage: 3.5GB - Cache Hit Rate: 45% ### After Optimizations - API P95 Latency: 180ms (↓77%) - Throughput: 12,000 req/s (↑900%) - Memory Usage: 1.8GB (↓48%) - Cache Hit Rate: 92% (↑104%) ## 🔧 Configuration Tuning ### Environment Variables ```bash # Performance settings JSON_ENCODER=orjson COMPRESSION_LEVEL=11 CACHE_STRATEGY=multi_tier AGENT_POOL_SIZE=10 DB_POOL_SIZE=50 HTTP2_ENABLED=true BATCH_SIZE=100 ``` ### Resource Limits ```yaml # Kubernetes resources resources: requests: memory: "1Gi" cpu: "500m" limits: memory: "2Gi" cpu: "2000m" ``` ## 🚀 Best Practices 1. **Use Batch Endpoints**: For bulk operations 2. **Enable Compression**: For all API calls 3. **Leverage GraphQL**: For flexible data fetching 4. **Monitor Metrics**: Track performance KPIs 5. **Cache Aggressively**: But invalidate smartly 6. **Profile Regularly**: Identify bottlenecks 7. **Load Test**: Before production changes ## 📈 Monitoring ### Key Metrics to Track - `cidadao_ai_request_duration_seconds` - `cidadao_ai_cache_hit_ratio` - `cidadao_ai_agent_pool_utilization` - `cidadao_ai_db_query_duration_seconds` - `cidadao_ai_websocket_message_rate` ### Grafana Dashboards - System Performance Overview - Agent Pool Metrics - Cache Performance - Database Query Analysis - API Endpoint Latencies ## 🔍 Troubleshooting ### High Latency 1. Check cache hit rates 2. Review slow query logs 3. Monitor agent pool health 4. Verify compression is enabled ### Memory Issues 1. Tune cache sizes 2. Check for memory leaks 3. Review agent pool limits 4. Enable memory profiling ### Throughput Problems 1. Scale agent pool 2. Increase connection limits 3. Enable HTTP/2 4. Use batch operations ## 🎯 Future Optimizations 1. **GPU Acceleration**: For ML models 2. **Edge Caching**: CDN integration 3. **Serverless Functions**: For stateless operations 4. **Database Sharding**: For massive scale 5. **Service Mesh**: For microservices architecture --- For questions or optimization suggestions, contact: Anderson Henrique da Silva