Spaces:
Sleeping
Sleeping
Prasanna Sridhar
commited on
Commit
·
aedd89b
1
Parent(s):
2f1d1a1
Refactor app.py - extract reusable functions
Browse files- .gitignore +2 -2
- app.py +116 -148
- requirements.txt +2 -0
.gitignore
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
env/
|
| 3 |
__pycache__
|
| 4 |
.python-version
|
| 5 |
-
|
| 6 |
|
| 7 |
# vim
|
| 8 |
-
*.sw[op]
|
|
|
|
| 2 |
env/
|
| 3 |
__pycache__
|
| 4 |
.python-version
|
| 5 |
+
*.py[od]
|
| 6 |
|
| 7 |
# vim
|
| 8 |
+
*.sw[op]
|
app.py
CHANGED
|
@@ -14,11 +14,6 @@ import matplotlib.pyplot as plt
|
|
| 14 |
import io
|
| 15 |
from enum import Enum
|
| 16 |
import os
|
| 17 |
-
import subprocess
|
| 18 |
-
from subprocess import call
|
| 19 |
-
import shlex
|
| 20 |
-
import shutil
|
| 21 |
-
#os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), "tmp")
|
| 22 |
cwd = os.getcwd()
|
| 23 |
# Suppress warnings to avoid overflowing the log.
|
| 24 |
import warnings
|
|
@@ -145,22 +140,6 @@ def build_model_and_transforms(args):
|
|
| 145 |
|
| 146 |
return model, data_transform
|
| 147 |
|
| 148 |
-
examples = [
|
| 149 |
-
["strawberry.jpg", "strawberry", {"image": "strawberry.jpg"}],
|
| 150 |
-
["strawberry.jpg", "blueberry", {"image": "strawberry.jpg"}],
|
| 151 |
-
["bird-1.JPG", "bird", {"image": "bird-2.JPG"}],
|
| 152 |
-
["fish.jpg", "fish", {"image": "fish.jpg"}],
|
| 153 |
-
["women.jpg", "girl", {"image": "women.jpg"}],
|
| 154 |
-
["women.jpg", "boy", {"image": "women.jpg"}],
|
| 155 |
-
["balloon.jpg", "hot air balloon", {"image": "balloon.jpg"}],
|
| 156 |
-
["deer.jpg", "deer", {"image": "deer.jpg"}],
|
| 157 |
-
["apple.jpg", "apple", {"image": "apple.jpg"}],
|
| 158 |
-
["egg.jpg", "egg", {"image": "egg.jpg"}],
|
| 159 |
-
["stamp.jpg", "stamp", {"image": "stamp.jpg"}],
|
| 160 |
-
["green-pea.jpg", "green pea", {"image": "green-pea.jpg"}],
|
| 161 |
-
["lego.jpg", "lego", {"image": "lego.jpg"}]
|
| 162 |
-
]
|
| 163 |
-
|
| 164 |
# APP:
|
| 165 |
def get_box_inputs(prompts):
|
| 166 |
box_inputs = []
|
|
@@ -197,6 +176,107 @@ def get_ind_to_filter(text, word_ids, keywords):
|
|
| 197 |
|
| 198 |
return inds_to_filter
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
if __name__ == '__main__':
|
| 201 |
|
| 202 |
parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()])
|
|
@@ -207,54 +287,15 @@ if __name__ == '__main__':
|
|
| 207 |
|
| 208 |
@spaces.GPU(duration=120)
|
| 209 |
def count(image, text, prompts, state, device):
|
| 210 |
-
|
| 211 |
-
keywords = "" # do not handle this for now
|
| 212 |
-
|
| 213 |
-
# Handle no prompt case.
|
| 214 |
if prompts is None:
|
| 215 |
prompts = {"image": image, "points": []}
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
|
| 221 |
-
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
| 222 |
-
exemplars = [exemplars["exemplars"].to(device)]
|
| 223 |
-
|
| 224 |
-
with torch.no_grad():
|
| 225 |
-
model_output = model(
|
| 226 |
-
nested_tensor_from_tensor_list(input_image),
|
| 227 |
-
nested_tensor_from_tensor_list(input_image_exemplars),
|
| 228 |
-
exemplars,
|
| 229 |
-
[torch.tensor([0]).to(device) for _ in range(len(input_image))],
|
| 230 |
-
captions=[text + " ."] * len(input_image),
|
| 231 |
-
)
|
| 232 |
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
boxes = model_output["pred_boxes"][0]
|
| 236 |
-
if len(keywords.strip()) > 0:
|
| 237 |
-
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
|
| 238 |
-
else:
|
| 239 |
-
box_mask = logits.max(dim=-1).values > CONF_THRESH
|
| 240 |
-
logits = logits[box_mask, :].cpu().numpy()
|
| 241 |
-
boxes = boxes[box_mask, :].cpu().numpy()
|
| 242 |
-
|
| 243 |
-
# Plot results.
|
| 244 |
-
(w, h) = image.size
|
| 245 |
-
det_map = np.zeros((h, w))
|
| 246 |
-
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
|
| 247 |
-
det_map = ndimage.gaussian_filter(
|
| 248 |
-
det_map, sigma=(w // 200, w // 200), order=0
|
| 249 |
-
)
|
| 250 |
-
plt.imshow(image)
|
| 251 |
-
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
|
| 252 |
-
plt.axis('off')
|
| 253 |
-
img_buf = io.BytesIO()
|
| 254 |
-
plt.savefig(img_buf, format='png', bbox_inches='tight')
|
| 255 |
-
plt.close()
|
| 256 |
-
|
| 257 |
-
output_img = Image.open(img_buf)
|
| 258 |
|
| 259 |
if AppSteps.TEXT_AND_EXEMPLARS not in state:
|
| 260 |
exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
|
|
@@ -274,92 +315,19 @@ if __name__ == '__main__':
|
|
| 274 |
main_instructions_comp = gr.Markdown(visible=True)
|
| 275 |
step_3 = gr.Tab(visible=True)
|
| 276 |
|
| 277 |
-
out_label = "
|
| 278 |
-
if len(text.strip()) > 0:
|
| 279 |
-
out_label += " text"
|
| 280 |
-
if exemplars[0].size()[0] == 1:
|
| 281 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar."
|
| 282 |
-
elif exemplars[0].size()[0] > 1:
|
| 283 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars."
|
| 284 |
-
else:
|
| 285 |
-
out_label += "."
|
| 286 |
-
elif exemplars[0].size()[0] > 0:
|
| 287 |
-
if exemplars[0].size()[0] == 1:
|
| 288 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar."
|
| 289 |
-
else:
|
| 290 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars."
|
| 291 |
-
else:
|
| 292 |
-
out_label = "Nothing specified to detect."
|
| 293 |
-
|
| 294 |
-
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=boxes.shape[0]), new_submit_btn, gr.Tab(visible=True), step_3, state)
|
| 295 |
|
| 296 |
@spaces.GPU
|
| 297 |
def count_main(image, text, prompts, device):
|
| 298 |
-
keywords = "" # do not handle this for now
|
| 299 |
-
# Handle no prompt case.
|
| 300 |
if prompts is None:
|
| 301 |
prompts = {"image": image, "points": []}
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
| 308 |
-
exemplars = [exemplars["exemplars"].to(device)]
|
| 309 |
-
|
| 310 |
-
with torch.no_grad():
|
| 311 |
-
model_output = model(
|
| 312 |
-
nested_tensor_from_tensor_list(input_image),
|
| 313 |
-
nested_tensor_from_tensor_list(input_image_exemplars),
|
| 314 |
-
exemplars,
|
| 315 |
-
[torch.tensor([0]).to(device) for _ in range(len(input_image))],
|
| 316 |
-
captions=[text + " ."] * len(input_image),
|
| 317 |
-
)
|
| 318 |
-
|
| 319 |
-
ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords)
|
| 320 |
-
logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter]
|
| 321 |
-
boxes = model_output["pred_boxes"][0]
|
| 322 |
-
if len(keywords.strip()) > 0:
|
| 323 |
-
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
|
| 324 |
-
else:
|
| 325 |
-
box_mask = logits.max(dim=-1).values > CONF_THRESH
|
| 326 |
-
logits = logits[box_mask, :].cpu().numpy()
|
| 327 |
-
boxes = boxes[box_mask, :].cpu().numpy()
|
| 328 |
-
|
| 329 |
-
# Plot results.
|
| 330 |
-
(w, h) = image.size
|
| 331 |
-
det_map = np.zeros((h, w))
|
| 332 |
-
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
|
| 333 |
-
det_map = ndimage.gaussian_filter(
|
| 334 |
-
det_map, sigma=(w // 200, w // 200), order=0
|
| 335 |
-
)
|
| 336 |
-
plt.imshow(image)
|
| 337 |
-
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
|
| 338 |
-
plt.axis('off')
|
| 339 |
-
img_buf = io.BytesIO()
|
| 340 |
-
plt.savefig(img_buf, format='png', bbox_inches='tight')
|
| 341 |
-
plt.close()
|
| 342 |
-
|
| 343 |
-
output_img = Image.open(img_buf)
|
| 344 |
-
|
| 345 |
-
out_label = "Detected instances predicted with"
|
| 346 |
-
if len(text.strip()) > 0:
|
| 347 |
-
out_label += " text"
|
| 348 |
-
if exemplars[0].size()[0] == 1:
|
| 349 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar."
|
| 350 |
-
elif exemplars[0].size()[0] > 1:
|
| 351 |
-
out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars."
|
| 352 |
-
else:
|
| 353 |
-
out_label += "."
|
| 354 |
-
elif exemplars[0].size()[0] > 0:
|
| 355 |
-
if exemplars[0].size()[0] == 1:
|
| 356 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar."
|
| 357 |
-
else:
|
| 358 |
-
out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars."
|
| 359 |
-
else:
|
| 360 |
-
out_label = "Nothing specified to detect."
|
| 361 |
|
| 362 |
-
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=
|
| 363 |
|
| 364 |
def remove_label(image):
|
| 365 |
return gr.Image(show_label=False)
|
|
@@ -401,12 +369,12 @@ if __name__ == '__main__':
|
|
| 401 |
with gr.Accordion("Open for Further Information", open=False):
|
| 402 |
gr.Markdown(exemplar_img_drawing_instructions_part_2)
|
| 403 |
with gr.Tab("Step 1", visible=True) as step_1:
|
| 404 |
-
input_image = gr.Image(type='pil', label='Input Image', show_label='True', value="strawberry.jpg", interactive=False
|
| 405 |
gr.Markdown('# Click "Count" to count the strawberries.')
|
| 406 |
|
| 407 |
with gr.Column():
|
| 408 |
with gr.Tab("Output Image"):
|
| 409 |
-
detected_instances = gr.Image(label="Detected Instances", show_label='True', interactive=False, visible=True
|
| 410 |
|
| 411 |
with gr.Row():
|
| 412 |
input_text = gr.Textbox(label="What would you like to count?", value="strawberry", interactive=True)
|
|
|
|
| 14 |
import io
|
| 15 |
from enum import Enum
|
| 16 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
cwd = os.getcwd()
|
| 18 |
# Suppress warnings to avoid overflowing the log.
|
| 19 |
import warnings
|
|
|
|
| 140 |
|
| 141 |
return model, data_transform
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
# APP:
|
| 144 |
def get_box_inputs(prompts):
|
| 145 |
box_inputs = []
|
|
|
|
| 176 |
|
| 177 |
return inds_to_filter
|
| 178 |
|
| 179 |
+
def generate_heatmap(image, boxes):
|
| 180 |
+
# Plot results.
|
| 181 |
+
(w, h) = image.size
|
| 182 |
+
det_map = np.zeros((h, w))
|
| 183 |
+
det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
|
| 184 |
+
det_map = ndimage.gaussian_filter(
|
| 185 |
+
det_map, sigma=(w // 200, w // 200), order=0
|
| 186 |
+
)
|
| 187 |
+
plt.imshow(image)
|
| 188 |
+
plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
|
| 189 |
+
plt.axis('off')
|
| 190 |
+
img_buf = io.BytesIO()
|
| 191 |
+
plt.savefig(img_buf, format='png', bbox_inches='tight')
|
| 192 |
+
plt.close()
|
| 193 |
+
|
| 194 |
+
output_img = Image.open(img_buf)
|
| 195 |
+
return output_img
|
| 196 |
+
|
| 197 |
+
def generate_output_label(text, num_exemplars):
|
| 198 |
+
out_label = "Detected instances predicted with"
|
| 199 |
+
if len(text.strip()) > 0:
|
| 200 |
+
out_label += " text"
|
| 201 |
+
if num_exemplars == 1:
|
| 202 |
+
out_label += " and " + str(num_exemplars) + " visual exemplar."
|
| 203 |
+
elif num_exemplars > 1:
|
| 204 |
+
out_label += " and " + str(num_exemplars) + " visual exemplars."
|
| 205 |
+
else:
|
| 206 |
+
out_label += "."
|
| 207 |
+
elif num_exemplars > 0:
|
| 208 |
+
if num_exemplars == 1:
|
| 209 |
+
out_label += " " + str(num_exemplars) + " visual exemplar."
|
| 210 |
+
else:
|
| 211 |
+
out_label += " " + str(num_exemplars) + " visual exemplars."
|
| 212 |
+
else:
|
| 213 |
+
out_label = "Nothing specified to detect."
|
| 214 |
+
|
| 215 |
+
return out_label
|
| 216 |
+
|
| 217 |
+
def preprocess(image, input_prompts = None):
|
| 218 |
+
if input_prompts == None:
|
| 219 |
+
prompts = { "image": image, "points": []}
|
| 220 |
+
else:
|
| 221 |
+
prompts = input_prompts
|
| 222 |
+
|
| 223 |
+
input_image, _ = transform(image, None)
|
| 224 |
+
exemplar = get_box_inputs(prompts["points"])
|
| 225 |
+
# Wrapping exemplar in a dictionary to apply only relevant transforms
|
| 226 |
+
input_image_exemplar, exemplar = transform(prompts['image'], {"exemplars": torch.tensor(exemplar)})
|
| 227 |
+
exemplar = exemplar["exemplars"]
|
| 228 |
+
|
| 229 |
+
return input_image, input_image_exemplar, exemplar
|
| 230 |
+
|
| 231 |
+
def get_boxes_from_prediction(model_output, text, keywords = ""):
|
| 232 |
+
ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords)
|
| 233 |
+
logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter]
|
| 234 |
+
boxes = model_output["pred_boxes"][0]
|
| 235 |
+
if len(keywords.strip()) > 0:
|
| 236 |
+
box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
|
| 237 |
+
else:
|
| 238 |
+
box_mask = logits.max(dim=-1).values > CONF_THRESH
|
| 239 |
+
boxes = boxes[box_mask, :].cpu().numpy()
|
| 240 |
+
logits = logits[box_mask, :].cpu().numpy()
|
| 241 |
+
return boxes, logits
|
| 242 |
+
|
| 243 |
+
def predict(model, image, text, prompts, device):
|
| 244 |
+
keywords = "" # do not handle this for now
|
| 245 |
+
input_image, input_image_exemplar, exemplar = preprocess(image, prompts)
|
| 246 |
+
|
| 247 |
+
input_images = input_image.unsqueeze(0).to(device)
|
| 248 |
+
input_image_exemplars = input_image_exemplar.unsqueeze(0).to(device)
|
| 249 |
+
exemplars = [exemplar.to(device)]
|
| 250 |
+
|
| 251 |
+
with torch.no_grad():
|
| 252 |
+
model_output = model(
|
| 253 |
+
nested_tensor_from_tensor_list(input_images),
|
| 254 |
+
nested_tensor_from_tensor_list(input_image_exemplars),
|
| 255 |
+
exemplars,
|
| 256 |
+
[torch.tensor([0]).to(device) for _ in range(len(input_images))],
|
| 257 |
+
captions=[text + " ."] * len(input_images),
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
keywords = ""
|
| 261 |
+
return get_boxes_from_prediction(model_output, text, keywords)
|
| 262 |
+
|
| 263 |
+
examples = [
|
| 264 |
+
["strawberry.jpg", "strawberry", {"image": "strawberry.jpg"}],
|
| 265 |
+
["strawberry.jpg", "blueberry", {"image": "strawberry.jpg"}],
|
| 266 |
+
["bird-1.JPG", "bird", {"image": "bird-2.JPG"}],
|
| 267 |
+
["fish.jpg", "fish", {"image": "fish.jpg"}],
|
| 268 |
+
["women.jpg", "girl", {"image": "women.jpg"}],
|
| 269 |
+
["women.jpg", "boy", {"image": "women.jpg"}],
|
| 270 |
+
["balloon.jpg", "hot air balloon", {"image": "balloon.jpg"}],
|
| 271 |
+
["deer.jpg", "deer", {"image": "deer.jpg"}],
|
| 272 |
+
["apple.jpg", "apple", {"image": "apple.jpg"}],
|
| 273 |
+
["egg.jpg", "egg", {"image": "egg.jpg"}],
|
| 274 |
+
["stamp.jpg", "stamp", {"image": "stamp.jpg"}],
|
| 275 |
+
["green-pea.jpg", "green pea", {"image": "green-pea.jpg"}],
|
| 276 |
+
["lego.jpg", "lego", {"image": "lego.jpg"}]
|
| 277 |
+
]
|
| 278 |
+
|
| 279 |
+
|
| 280 |
if __name__ == '__main__':
|
| 281 |
|
| 282 |
parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()])
|
|
|
|
| 287 |
|
| 288 |
@spaces.GPU(duration=120)
|
| 289 |
def count(image, text, prompts, state, device):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
if prompts is None:
|
| 291 |
prompts = {"image": image, "points": []}
|
| 292 |
+
|
| 293 |
+
boxes, _ = predict(model, image, text, prompts, device)
|
| 294 |
+
count = len(boxes)
|
| 295 |
+
output_img = generate_heatmap(image, boxes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
+
num_exemplars = len(get_box_inputs(prompts["points"]))
|
| 298 |
+
out_label = generate_output_label(text, num_exemplars)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
if AppSteps.TEXT_AND_EXEMPLARS not in state:
|
| 301 |
exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
|
|
|
|
| 315 |
main_instructions_comp = gr.Markdown(visible=True)
|
| 316 |
step_3 = gr.Tab(visible=True)
|
| 317 |
|
| 318 |
+
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=count), new_submit_btn, gr.Tab(visible=True), step_3, state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
@spaces.GPU
|
| 321 |
def count_main(image, text, prompts, device):
|
|
|
|
|
|
|
| 322 |
if prompts is None:
|
| 323 |
prompts = {"image": image, "points": []}
|
| 324 |
+
boxes, _ = predict(model, image, text, prompts, device)
|
| 325 |
+
count = len(boxes)
|
| 326 |
+
output_img = generate_heatmap(image, boxes)
|
| 327 |
+
num_exemplars = len(get_box_inputs(prompts["points"]))
|
| 328 |
+
out_label = generate_output_label(text, num_exemplars)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
+
return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=count))
|
| 331 |
|
| 332 |
def remove_label(image):
|
| 333 |
return gr.Image(show_label=False)
|
|
|
|
| 369 |
with gr.Accordion("Open for Further Information", open=False):
|
| 370 |
gr.Markdown(exemplar_img_drawing_instructions_part_2)
|
| 371 |
with gr.Tab("Step 1", visible=True) as step_1:
|
| 372 |
+
input_image = gr.Image(type='pil', label='Input Image', show_label='True', value="strawberry.jpg", interactive=False)
|
| 373 |
gr.Markdown('# Click "Count" to count the strawberries.')
|
| 374 |
|
| 375 |
with gr.Column():
|
| 376 |
with gr.Tab("Output Image"):
|
| 377 |
+
detected_instances = gr.Image(label="Detected Instances", show_label='True', interactive=False, visible=True)
|
| 378 |
|
| 379 |
with gr.Row():
|
| 380 |
input_text = gr.Textbox(label="What would you like to count?", value="strawberry", interactive=True)
|
requirements.txt
CHANGED
|
@@ -12,6 +12,8 @@ ushlex
|
|
| 12 |
gradio>=4.0.0,<5
|
| 13 |
gradio_image_prompter-0.1.0-py3-none-any.whl
|
| 14 |
spaces
|
|
|
|
|
|
|
| 15 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 16 |
torch<2.6
|
| 17 |
torchvision
|
|
|
|
| 12 |
gradio>=4.0.0,<5
|
| 13 |
gradio_image_prompter-0.1.0-py3-none-any.whl
|
| 14 |
spaces
|
| 15 |
+
filetype
|
| 16 |
+
tqdm
|
| 17 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 18 |
torch<2.6
|
| 19 |
torchvision
|