ningrumdaud commited on
Commit
30f0a69
·
verified ·
1 Parent(s): c1f7f4a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -2,12 +2,12 @@ from transformers import pipeline
2
  import gradio as gr
3
 
4
  # Load models only once to improve performance
5
- model1 = pipeline(model="cardiffnlp/twitter-roberta-base-sentiment-latest")
6
  model2 = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis")
7
 
8
  def predict_sentiment(text, model_choice):
9
  try:
10
- if model_choice == "Model 1 (twitter-roberta-base)":
11
  predictions = model1(text)
12
  elif model_choice == "Model 2 (BERTweet-base)":
13
  predictions = model2(text)
@@ -21,7 +21,7 @@ def documentation():
21
 
22
  This demo utilizes two different models from the Hugging Face Transformers library:
23
 
24
- - **Model 1**: RoBERTa-base for sentiment analysis specifically fine-tuned for English Tweets.
25
  - **Model 2**: BERTweet for sentiment analysis specifically fine-tuned for English Tweets.
26
 
27
  Choose a model from the dropdown and enter text to see the sentiment prediction.
@@ -41,7 +41,7 @@ tab1 = gr.Interface(
41
  fn=predict_sentiment,
42
  title="Sentiment Analysis",
43
  description="Select a model and enter text to analyze sentiment.",
44
- inputs=[gr.Textbox(label="Input Text"), gr.Radio(["Model 1 (Default Transformer)", "Model 2 (BERTweet-base)"], label="Model Choice")],
45
  outputs="text",
46
  examples=exams
47
  )
 
2
  import gradio as gr
3
 
4
  # Load models only once to improve performance
5
+ model1 = pipeline(model="siebert/sentiment-roberta-large-english")
6
  model2 = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis")
7
 
8
  def predict_sentiment(text, model_choice):
9
  try:
10
+ if model_choice == "Model 1 (RoBERTa-large)":
11
  predictions = model1(text)
12
  elif model_choice == "Model 2 (BERTweet-base)":
13
  predictions = model2(text)
 
21
 
22
  This demo utilizes two different models from the Hugging Face Transformers library:
23
 
24
+ - **Model 1**: RoBERTa-large for sentiment analysis fine-tuned for diverse English text sources to enhance generalization across different types of texts (reviews, tweets, etc.).
25
  - **Model 2**: BERTweet for sentiment analysis specifically fine-tuned for English Tweets.
26
 
27
  Choose a model from the dropdown and enter text to see the sentiment prediction.
 
41
  fn=predict_sentiment,
42
  title="Sentiment Analysis",
43
  description="Select a model and enter text to analyze sentiment.",
44
+ inputs=[gr.Textbox(label="Input Text"), gr.Radio(["Model 1 (RoBERTa-large)", "Model 2 (BERTweet-base)"], label="Model Choice")],
45
  outputs="text",
46
  examples=exams
47
  )