Spaces:
Running
on
Zero
Running
on
Zero
πwπ
Browse files
app.py
CHANGED
|
@@ -16,22 +16,29 @@ model = AutoModelForZeroShotImageClassification.from_pretrained(
|
|
| 16 |
|
| 17 |
|
| 18 |
@spaces.GPU
|
| 19 |
-
def search(query: str, k: int = 4
|
| 20 |
"""a function that embeds a new image and returns the most probable results"""
|
| 21 |
|
| 22 |
-
pixel_values = processor(images
|
|
|
|
|
|
|
| 23 |
pixel_values = pixel_values.to(device)
|
| 24 |
-
img_emb = model.get_image_features(pixel_values)[0]
|
| 25 |
-
img_emb = img_emb.cpu().detach().numpy()
|
| 26 |
|
| 27 |
-
scores, retrieved_examples = dataset.get_nearest_examples(
|
| 28 |
-
"embeddings",
|
| 29 |
-
|
|
|
|
| 30 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
return
|
| 33 |
|
| 34 |
|
| 35 |
-
demo = gr.Interface(search, inputs="image", outputs=["gallery"])
|
| 36 |
|
| 37 |
-
demo.launch(debug=True)
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
@spaces.GPU
|
| 19 |
+
def search(query: str, k: int = 4):
|
| 20 |
"""a function that embeds a new image and returns the most probable results"""
|
| 21 |
|
| 22 |
+
pixel_values = processor(images=query, return_tensors="pt")[
|
| 23 |
+
"pixel_values"
|
| 24 |
+
] # embed new image
|
| 25 |
pixel_values = pixel_values.to(device)
|
| 26 |
+
img_emb = model.get_image_features(pixel_values)[0] # because 1 element
|
| 27 |
+
img_emb = img_emb.cpu().detach().numpy() # because datasets only works with numpy
|
| 28 |
|
| 29 |
+
scores, retrieved_examples = dataset.get_nearest_examples( # retrieve results
|
| 30 |
+
"embeddings",
|
| 31 |
+
img_emb, # compare our new embedded query with the dataset embeddings
|
| 32 |
+
k=k, # get only top k results
|
| 33 |
)
|
| 34 |
+
images = retrieved_examples["image"]
|
| 35 |
+
labels = {}
|
| 36 |
+
for i in range(k):
|
| 37 |
+
labels[retrieved_examples["text"][i]] = scores[i]
|
| 38 |
|
| 39 |
+
return images, labels
|
| 40 |
|
| 41 |
|
| 42 |
+
demo = gr.Interface(search, inputs="image", outputs=["gallery", "label"])
|
| 43 |
|
| 44 |
+
demo.launch(debug=True)
|