Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,12 +9,12 @@ from src_inference.pipeline import FluxPipeline
|
|
| 9 |
from src_inference.lora_helper import set_single_lora
|
| 10 |
|
| 11 |
BASE_PATH = "black-forest-labs/FLUX.1-dev"
|
| 12 |
-
LOCAL_LORA_DIR = "./LoRAs"
|
| 13 |
-
CUSTOM_LORA_DIR = "./Custom_LoRAs"
|
| 14 |
os.makedirs(LOCAL_LORA_DIR, exist_ok=True)
|
| 15 |
os.makedirs(CUSTOM_LORA_DIR, exist_ok=True)
|
| 16 |
|
| 17 |
-
# ------------------ DEVICE SETUP
|
| 18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
| 20 |
print(f"🚀 Running on device: {device}")
|
|
@@ -37,32 +37,16 @@ pipe = FluxPipeline.from_pretrained(
|
|
| 37 |
set_single_lora(pipe.transformer, omni_consistency_path,
|
| 38 |
lora_weights=[1], cond_size=512)
|
| 39 |
|
| 40 |
-
# ------------------
|
| 41 |
-
def download_all_loras():
|
| 42 |
-
lora_names = [
|
| 43 |
-
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
|
| 44 |
-
"Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
|
| 45 |
-
"Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
|
| 46 |
-
"Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
|
| 47 |
-
"Snoopy", "Van_Gogh", "Vector"
|
| 48 |
-
]
|
| 49 |
-
for name in lora_names:
|
| 50 |
-
hf_hub_download(
|
| 51 |
-
repo_id="showlab/OmniConsistency",
|
| 52 |
-
filename=f"LoRAs/{name}_rank128_bf16.safetensors",
|
| 53 |
-
local_dir=LOCAL_LORA_DIR,
|
| 54 |
-
)
|
| 55 |
-
download_all_loras()
|
| 56 |
-
|
| 57 |
def clear_cache(transformer):
|
| 58 |
for _, attn_processor in transformer.attn_processors.items():
|
| 59 |
attn_processor.bank_kv.clear()
|
| 60 |
|
| 61 |
-
# ------------------ Generation
|
| 62 |
-
@spaces.GPU()
|
| 63 |
def generate_image(
|
| 64 |
-
lora_name,
|
| 65 |
-
custom_repo_id,
|
| 66 |
prompt,
|
| 67 |
uploaded_image,
|
| 68 |
width, height,
|
|
@@ -73,6 +57,7 @@ def generate_image(
|
|
| 73 |
width, height = int(width), int(height)
|
| 74 |
generator = torch.Generator("cpu").manual_seed(seed)
|
| 75 |
|
|
|
|
| 76 |
if custom_repo_id and custom_repo_id.strip():
|
| 77 |
repo_id = custom_repo_id.strip()
|
| 78 |
try:
|
|
@@ -91,8 +76,12 @@ def generate_image(
|
|
| 91 |
except Exception as e:
|
| 92 |
raise gr.Error(f"Load custom LoRA failed: {e}")
|
| 93 |
else:
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
)
|
| 97 |
|
| 98 |
pipe.unload_lora_weights()
|
|
@@ -104,13 +93,14 @@ def generate_image(
|
|
| 104 |
except Exception as e:
|
| 105 |
raise gr.Error(f"Load LoRA failed: {e}")
|
| 106 |
|
| 107 |
-
spatial_image
|
| 108 |
subject_images = []
|
|
|
|
| 109 |
start = time.time()
|
| 110 |
out_img = pipe(
|
| 111 |
prompt,
|
| 112 |
height=(height // 8) * 8,
|
| 113 |
-
width=(width
|
| 114 |
guidance_scale=guidance_scale,
|
| 115 |
num_inference_steps=num_inference_steps,
|
| 116 |
max_sequence_length=512,
|
|
@@ -124,7 +114,7 @@ def generate_image(
|
|
| 124 |
clear_cache(pipe.transformer)
|
| 125 |
return uploaded_image, out_img
|
| 126 |
|
| 127 |
-
# ------------------ UI
|
| 128 |
def create_interface():
|
| 129 |
demo_lora_names = [
|
| 130 |
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
|
|
@@ -135,22 +125,22 @@ def create_interface():
|
|
| 135 |
]
|
| 136 |
|
| 137 |
def update_trigger_word(lora_name, prompt):
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
|
| 144 |
examples = [
|
| 145 |
-
["3D_Chibi", "", "3D Chibi style, Two smiling colleagues
|
| 146 |
Image.open("./test_imgs/00.png"), 680, 1024, 3.5, 24, 42],
|
| 147 |
-
["Clay_Toy", "", "Clay Toy style,
|
| 148 |
Image.open("./test_imgs/01.png"), 560, 1024, 3.5, 24, 42],
|
| 149 |
-
["American_Cartoon", "", "American Cartoon style,
|
| 150 |
Image.open("./test_imgs/02.png"), 568, 1024, 3.5, 24, 42],
|
| 151 |
-
["Origami", "", "Origami style, A
|
| 152 |
Image.open("./test_imgs/03.png"), 768, 672, 3.5, 24, 42],
|
| 153 |
-
["Vector", "", "Vector style,
|
| 154 |
Image.open("./test_imgs/04.png"), 512, 1024, 3.5, 24, 42]
|
| 155 |
]
|
| 156 |
|
|
@@ -169,33 +159,32 @@ def create_interface():
|
|
| 169 |
|
| 170 |
with gr.Row():
|
| 171 |
with gr.Column(scale=1):
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
| 176 |
)
|
| 177 |
-
|
| 178 |
demo_lora_names, label="Select built-in LoRA")
|
| 179 |
-
|
| 180 |
label="Enter Custom LoRA",
|
| 181 |
-
placeholder="
|
| 182 |
-
info="
|
| 183 |
)
|
| 184 |
-
|
|
|
|
| 185 |
with gr.Column(scale=1):
|
| 186 |
output_image = gr.ImageSlider(label="Generated Image")
|
|
|
|
| 187 |
with gr.Accordion("Advanced Options", open=False):
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
1, 2_147_483_647, value=42, step=1, label="Seed")
|
| 196 |
-
|
| 197 |
-
lora_dropdown.select(fn=update_trigger_word, inputs=[lora_dropdown,prompt_box],
|
| 198 |
-
outputs=prompt_box)
|
| 199 |
|
| 200 |
gr.Examples(
|
| 201 |
examples=examples,
|
|
@@ -213,8 +202,10 @@ def create_interface():
|
|
| 213 |
width_box, height_box, guidance_slider, steps_slider, seed_slider],
|
| 214 |
outputs=output_image
|
| 215 |
)
|
|
|
|
| 216 |
return demo
|
| 217 |
|
|
|
|
| 218 |
if __name__ == "__main__":
|
| 219 |
demo = create_interface()
|
| 220 |
demo.launch(ssr_mode=False)
|
|
|
|
| 9 |
from src_inference.lora_helper import set_single_lora
|
| 10 |
|
| 11 |
BASE_PATH = "black-forest-labs/FLUX.1-dev"
|
| 12 |
+
LOCAL_LORA_DIR = "./LoRAs"
|
| 13 |
+
CUSTOM_LORA_DIR = "./Custom_LoRAs"
|
| 14 |
os.makedirs(LOCAL_LORA_DIR, exist_ok=True)
|
| 15 |
os.makedirs(CUSTOM_LORA_DIR, exist_ok=True)
|
| 16 |
|
| 17 |
+
# ------------------ DEVICE SETUP ------------------ #
|
| 18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
|
| 20 |
print(f"🚀 Running on device: {device}")
|
|
|
|
| 37 |
set_single_lora(pipe.transformer, omni_consistency_path,
|
| 38 |
lora_weights=[1], cond_size=512)
|
| 39 |
|
| 40 |
+
# ------------------ Util ------------------ #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def clear_cache(transformer):
|
| 42 |
for _, attn_processor in transformer.attn_processors.items():
|
| 43 |
attn_processor.bank_kv.clear()
|
| 44 |
|
| 45 |
+
# ------------------ Generation ------------------ #
|
| 46 |
+
@spaces.GPU()
|
| 47 |
def generate_image(
|
| 48 |
+
lora_name,
|
| 49 |
+
custom_repo_id,
|
| 50 |
prompt,
|
| 51 |
uploaded_image,
|
| 52 |
width, height,
|
|
|
|
| 57 |
width, height = int(width), int(height)
|
| 58 |
generator = torch.Generator("cpu").manual_seed(seed)
|
| 59 |
|
| 60 |
+
# Custom LoRA path
|
| 61 |
if custom_repo_id and custom_repo_id.strip():
|
| 62 |
repo_id = custom_repo_id.strip()
|
| 63 |
try:
|
|
|
|
| 76 |
except Exception as e:
|
| 77 |
raise gr.Error(f"Load custom LoRA failed: {e}")
|
| 78 |
else:
|
| 79 |
+
# Built-in LoRA: download only the one selected
|
| 80 |
+
lora_filename = f"LoRAs/{lora_name}_rank128_bf16.safetensors"
|
| 81 |
+
lora_path = hf_hub_download(
|
| 82 |
+
repo_id="showlab/OmniConsistency",
|
| 83 |
+
filename=lora_filename,
|
| 84 |
+
local_dir=LOCAL_LORA_DIR
|
| 85 |
)
|
| 86 |
|
| 87 |
pipe.unload_lora_weights()
|
|
|
|
| 93 |
except Exception as e:
|
| 94 |
raise gr.Error(f"Load LoRA failed: {e}")
|
| 95 |
|
| 96 |
+
spatial_image = [uploaded_image.convert("RGB")]
|
| 97 |
subject_images = []
|
| 98 |
+
|
| 99 |
start = time.time()
|
| 100 |
out_img = pipe(
|
| 101 |
prompt,
|
| 102 |
height=(height // 8) * 8,
|
| 103 |
+
width=(width // 8) * 8,
|
| 104 |
guidance_scale=guidance_scale,
|
| 105 |
num_inference_steps=num_inference_steps,
|
| 106 |
max_sequence_length=512,
|
|
|
|
| 114 |
clear_cache(pipe.transformer)
|
| 115 |
return uploaded_image, out_img
|
| 116 |
|
| 117 |
+
# ------------------ Gradio UI ------------------ #
|
| 118 |
def create_interface():
|
| 119 |
demo_lora_names = [
|
| 120 |
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
|
|
|
|
| 125 |
]
|
| 126 |
|
| 127 |
def update_trigger_word(lora_name, prompt):
|
| 128 |
+
for name in demo_lora_names:
|
| 129 |
+
trigger = " ".join(name.split("_")) + " style,"
|
| 130 |
+
prompt = prompt.replace(trigger, "")
|
| 131 |
+
new_trigger = " ".join(lora_name.split("_")) + " style,"
|
| 132 |
+
return new_trigger + prompt
|
| 133 |
|
| 134 |
examples = [
|
| 135 |
+
["3D_Chibi", "", "3D Chibi style, Two smiling colleagues high-five at a whiteboard filled with technical notes.",
|
| 136 |
Image.open("./test_imgs/00.png"), 680, 1024, 3.5, 24, 42],
|
| 137 |
+
["Clay_Toy", "", "Clay Toy style, A holiday-themed OpenAI team photo full of smiles and warmth.",
|
| 138 |
Image.open("./test_imgs/01.png"), 560, 1024, 3.5, 24, 42],
|
| 139 |
+
["American_Cartoon", "", "American Cartoon style, A dramatic subtitle moment from a classic film.",
|
| 140 |
Image.open("./test_imgs/02.png"), 568, 1024, 3.5, 24, 42],
|
| 141 |
+
["Origami", "", "Origami style, A Portugal football fan posing with Cristiano Ronaldo.",
|
| 142 |
Image.open("./test_imgs/03.png"), 768, 672, 3.5, 24, 42],
|
| 143 |
+
["Vector", "", "Vector style, The distracted boyfriend meme reimagined.",
|
| 144 |
Image.open("./test_imgs/04.png"), 512, 1024, 3.5, 24, 42]
|
| 145 |
]
|
| 146 |
|
|
|
|
| 159 |
|
| 160 |
with gr.Row():
|
| 161 |
with gr.Column(scale=1):
|
| 162 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
| 163 |
+
prompt_box = gr.Textbox(
|
| 164 |
+
label="Prompt",
|
| 165 |
+
value="3D Chibi style,",
|
| 166 |
+
info="Include a style like 'Ghibli style,' in your prompt for better results."
|
| 167 |
)
|
| 168 |
+
lora_dropdown = gr.Dropdown(
|
| 169 |
demo_lora_names, label="Select built-in LoRA")
|
| 170 |
+
custom_repo_box = gr.Textbox(
|
| 171 |
label="Enter Custom LoRA",
|
| 172 |
+
placeholder="e.g. username/repo_name",
|
| 173 |
+
info="Overrides built-in LoRA if provided."
|
| 174 |
)
|
| 175 |
+
gen_btn = gr.Button("Generate")
|
| 176 |
+
|
| 177 |
with gr.Column(scale=1):
|
| 178 |
output_image = gr.ImageSlider(label="Generated Image")
|
| 179 |
+
|
| 180 |
with gr.Accordion("Advanced Options", open=False):
|
| 181 |
+
height_box = gr.Textbox(value="1024", label="Height")
|
| 182 |
+
width_box = gr.Textbox(value="1024", label="Width")
|
| 183 |
+
guidance_slider = gr.Slider(0.1, 20, value=3.5, step=0.1, label="Guidance Scale")
|
| 184 |
+
steps_slider = gr.Slider(1, 50, value=25, step=1, label="Inference Steps")
|
| 185 |
+
seed_slider = gr.Slider(1, 2_147_483_647, value=42, step=1, label="Seed")
|
| 186 |
+
|
| 187 |
+
lora_dropdown.select(fn=update_trigger_word, inputs=[lora_dropdown, prompt_box], outputs=prompt_box)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
gr.Examples(
|
| 190 |
examples=examples,
|
|
|
|
| 202 |
width_box, height_box, guidance_slider, steps_slider, seed_slider],
|
| 203 |
outputs=output_image
|
| 204 |
)
|
| 205 |
+
|
| 206 |
return demo
|
| 207 |
|
| 208 |
+
# ------------------ Run ------------------ #
|
| 209 |
if __name__ == "__main__":
|
| 210 |
demo = create_interface()
|
| 211 |
demo.launch(ssr_mode=False)
|