Spaces:
Sleeping
Sleeping
| # Import required modules and components | |
| import os | |
| os.environ["OMAGENT_MODE"] = "lite" | |
| from pathlib import Path | |
| from agent.conclude.conclude import Conclude | |
| from agent.video_preprocessor.video_preprocess import VideoPreprocessor | |
| from agent.video_qa.qa import VideoQA | |
| from omagent_core.advanced_components.workflow.dnc.workflow import DnCWorkflow | |
| from omagent_core.clients.devices.cli import DefaultClient | |
| from omagent_core.engine.automator.task_handler import TaskHandler | |
| from omagent_core.engine.workflow.conductor_workflow import ConductorWorkflow | |
| from omagent_core.engine.workflow.task.do_while_task import (DnCLoopTask, | |
| InfiniteLoopTask) | |
| from omagent_core.engine.workflow.task.set_variable_task import SetVariableTask | |
| from omagent_core.engine.workflow.task.simple_task import simple_task | |
| from omagent_core.engine.workflow.task.switch_task import SwitchTask | |
| from omagent_core.utils.build import build_from_file | |
| from omagent_core.utils.container import container | |
| from omagent_core.utils.logger import logging | |
| from omagent_core.utils.registry import registry | |
| logging.init_logger("omagent", "omagent", level="INFO") | |
| # Set current working directory path | |
| CURRENT_PATH = root_path = Path(__file__).parents[0] | |
| # Import registered modules | |
| registry.import_module(project_path=CURRENT_PATH.joinpath("agent")) | |
| # Load container configuration from YAML file | |
| container.register_stm("SharedMemSTM") | |
| container.register_ltm(ltm="VideoMilvusLTM") | |
| container.from_config(CURRENT_PATH.joinpath("container.yaml")) | |
| # Initialize simple VQA workflow | |
| workflow = ConductorWorkflow(name="video_understanding") | |
| # 1. Video preprocess task for video preprocessing | |
| video_preprocess_task = simple_task( | |
| task_def_name=VideoPreprocessor, task_reference_name="video_preprocess" | |
| ) | |
| # 2. Video QA task for video QA | |
| video_qa_task = simple_task( | |
| task_def_name=VideoQA, | |
| task_reference_name="video_qa", | |
| inputs={ | |
| "video_md5": video_preprocess_task.output("video_md5"), | |
| "video_path": video_preprocess_task.output("video_path"), | |
| "instance_id": video_preprocess_task.output("instance_id"), | |
| }, | |
| ) | |
| dnc_workflow = DnCWorkflow() | |
| dnc_workflow.set_input(query=video_qa_task.output("query")) | |
| # 7. Conclude task for task conclusion | |
| conclude_task = simple_task( | |
| task_def_name=Conclude, | |
| task_reference_name="task_conclude", | |
| inputs={ | |
| "dnc_structure": dnc_workflow.dnc_structure, | |
| "last_output": dnc_workflow.last_output, | |
| }, | |
| ) | |
| # Configure workflow execution flow: Input -> Initialize global variables -> DnC Loop -> Conclude | |
| workflow >> video_preprocess_task >> video_qa_task >> dnc_workflow >> conclude_task | |
| # Register workflow | |
| workflow.register(overwrite=True) | |
| # Initialize and start app client with workflow configuration | |
| cli_client = DefaultClient( | |
| interactor=workflow, config_path="configs" | |
| ) | |
| cli_client.start_interactor() | |