Update app.py
Browse files
app.py
CHANGED
|
@@ -26,18 +26,26 @@ def process_audio(audio):
|
|
| 26 |
if audio is None:
|
| 27 |
return ""
|
| 28 |
|
| 29 |
-
# Get the audio data
|
| 30 |
-
if isinstance(audio, tuple):
|
| 31 |
-
audio = audio[1]
|
| 32 |
-
|
| 33 |
-
# Convert to numpy array if needed
|
| 34 |
-
audio = np.array(audio)
|
| 35 |
-
|
| 36 |
-
# Ensure we have mono audio
|
| 37 |
-
if len(audio.shape) > 1:
|
| 38 |
-
audio = audio.mean(axis=1)
|
| 39 |
-
|
| 40 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
# Prepare input for the model
|
| 42 |
inputs = feature_extractor(
|
| 43 |
audio,
|
|
@@ -46,8 +54,8 @@ def process_audio(audio):
|
|
| 46 |
padding=True
|
| 47 |
)
|
| 48 |
|
| 49 |
-
#
|
| 50 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 51 |
|
| 52 |
# Get prediction
|
| 53 |
with torch.no_grad():
|
|
@@ -55,12 +63,16 @@ def process_audio(audio):
|
|
| 55 |
logits = outputs.logits
|
| 56 |
predicted_id = torch.argmax(logits, dim=-1).item()
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
emotion = EMOTION_LABELS[predicted_id]
|
| 59 |
-
return emotion
|
| 60 |
|
| 61 |
except Exception as e:
|
| 62 |
-
print(f"Error
|
| 63 |
-
return "Error processing audio"
|
| 64 |
|
| 65 |
# Create Gradio interface
|
| 66 |
demo = gr.Interface(
|
|
@@ -82,4 +94,5 @@ demo = gr.Interface(
|
|
| 82 |
)
|
| 83 |
|
| 84 |
# Launch with a small queue for better real-time performance
|
| 85 |
-
|
|
|
|
|
|
| 26 |
if audio is None:
|
| 27 |
return ""
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
try:
|
| 30 |
+
# Get the audio data
|
| 31 |
+
if isinstance(audio, tuple):
|
| 32 |
+
audio = audio[1]
|
| 33 |
+
|
| 34 |
+
# Convert to numpy array and ensure float32 type
|
| 35 |
+
audio = np.array(audio, dtype=np.float32)
|
| 36 |
+
|
| 37 |
+
# Ensure we have mono audio
|
| 38 |
+
if len(audio.shape) > 1:
|
| 39 |
+
audio = audio.mean(axis=1)
|
| 40 |
+
|
| 41 |
+
# Normalize audio if needed
|
| 42 |
+
if audio.max() > 1.0 or audio.min() < -1.0:
|
| 43 |
+
audio = audio / max(abs(audio.max()), abs(audio.min()))
|
| 44 |
+
|
| 45 |
+
# Ensure we have non-zero audio
|
| 46 |
+
if len(audio) == 0 or np.all(audio == 0):
|
| 47 |
+
return "No audio detected"
|
| 48 |
+
|
| 49 |
# Prepare input for the model
|
| 50 |
inputs = feature_extractor(
|
| 51 |
audio,
|
|
|
|
| 54 |
padding=True
|
| 55 |
)
|
| 56 |
|
| 57 |
+
# Ensure all tensors are float32
|
| 58 |
+
inputs = {k: v.to(device, dtype=torch.float32) for k, v in inputs.items()}
|
| 59 |
|
| 60 |
# Get prediction
|
| 61 |
with torch.no_grad():
|
|
|
|
| 63 |
logits = outputs.logits
|
| 64 |
predicted_id = torch.argmax(logits, dim=-1).item()
|
| 65 |
|
| 66 |
+
# Get probabilities
|
| 67 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 68 |
+
confidence = probs[0][predicted_id].item() * 100
|
| 69 |
+
|
| 70 |
emotion = EMOTION_LABELS[predicted_id]
|
| 71 |
+
return f"{emotion} (confidence: {confidence:.1f}%)"
|
| 72 |
|
| 73 |
except Exception as e:
|
| 74 |
+
print(f"Error in audio processing: {str(e)}")
|
| 75 |
+
return "Error processing audio. Please try again."
|
| 76 |
|
| 77 |
# Create Gradio interface
|
| 78 |
demo = gr.Interface(
|
|
|
|
| 94 |
)
|
| 95 |
|
| 96 |
# Launch with a small queue for better real-time performance
|
| 97 |
+
if __name__ == "__main__":
|
| 98 |
+
demo.queue(max_size=1).launch(share=True)
|