Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""gradio.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1B520JUHmyofueyUqotN2yj6Gad69uavo
|
8 |
+
"""
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import tensorflow as tf
|
12 |
+
|
13 |
+
model = tf.keras.models.load_model('my_final_model.keras')
|
14 |
+
|
15 |
+
def predict_disease(image):
|
16 |
+
# Preprocess the image
|
17 |
+
img = image.reshape((-1, image.shape[0], image.shape[1], 3))
|
18 |
+
# Assuming your model expects images with 3 color channels
|
19 |
+
|
20 |
+
# Perform prediction
|
21 |
+
prediction = model.predict(img)
|
22 |
+
|
23 |
+
# Assuming prediction is a list of probabilities
|
24 |
+
labels = ['Early Blight', 'Late Blight', 'Healthy']
|
25 |
+
# Replace with your actual class labels
|
26 |
+
|
27 |
+
# Get predicted class
|
28 |
+
predicted_class = labels[prediction.argmax()]
|
29 |
+
return predicted_class
|
30 |
+
|
31 |
+
iface = gr.Interface(
|
32 |
+
fn=predict_disease,
|
33 |
+
inputs=gr.Image(shape=(224, 224)), # Adjust shape according to model's input
|
34 |
+
outputs="text",
|
35 |
+
title="Potato Disease Classification",
|
36 |
+
description="Upload an image of a potato leaf to classify its disease.",
|
37 |
+
)
|
38 |
+
iface.launch()
|
39 |
+
|
40 |
+
def predict_disease(image):
|
41 |
+
"""
|
42 |
+
Preprocesses the image, performs prediction, and returns the predicted class.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
image: The input image as a NumPy array.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
The predicted class label as a string.
|
49 |
+
"""
|
50 |
+
|
51 |
+
# Resize the image using TensorFlow
|
52 |
+
img = tf.image.resize(image, [224, 224]) # Resize image using TensorFlow
|
53 |
+
# Add batch dimension
|
54 |
+
img = tf.expand_dims(img, axis=0)
|
55 |
+
|
56 |
+
# Assuming your model expects images with 3 color channels
|
57 |
+
# Perform prediction
|
58 |
+
prediction = model.predict(img)
|
59 |
+
|
60 |
+
# Assuming prediction is a list of probabilities
|
61 |
+
labels = ['Early Blight', 'Late Blight', 'Healthy']
|
62 |
+
# Replace with your actual class labels
|
63 |
+
|
64 |
+
# Get predicted class
|
65 |
+
predicted_class = labels[prediction.argmax()]
|
66 |
+
return predicted_class
|
67 |
+
|
68 |
+
# ... (Rest of your code) ...
|
69 |
+
|
70 |
+
iface = gr.Interface(
|
71 |
+
fn=predict_disease,
|
72 |
+
inputs=gr.Image(), # Remove shape argument
|
73 |
+
outputs="text",
|
74 |
+
title="Potato Disease Classification",
|
75 |
+
description="Upload an image of a potato leaf to classify its disease.",
|
76 |
+
)
|
77 |
+
iface.launch()
|