import os import sys import logging import traceback import numpy as np import gradio as gr from typing import Optional, Tuple import soundfile as sf from pathlib import Path import requests import json import base64 import io import tempfile import uuid import time # 配置日志 logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler(sys.stdout), logging.FileHandler('app.log', mode='a', encoding='utf-8') ] ) # 控制第三方库的日志级别,避免HTTP请求日志刷屏 logging.getLogger("uvicorn.access").setLevel(logging.WARNING) logging.getLogger("uvicorn").setLevel(logging.WARNING) logging.getLogger("httpx").setLevel(logging.WARNING) logging.getLogger("httpcore").setLevel(logging.WARNING) logger = logging.getLogger(__name__) # 启动日志 logger.info("="*50) logger.info("🚀 VoxCPM应用启动中...") logger.info(f"Python版本: {sys.version}") logger.info(f"工作目录: {os.getcwd()}") logger.info(f"环境变量PORT: {os.environ.get('PORT', '未设置')}") logger.info(f"环境变量RAY_SERVE_URL: {os.environ.get('RAY_SERVE_URL', '未设置')}") logger.info("="*50) class RayServeVoxCPMClient: """Client wrapper that talks to Ray Serve TTS API.""" def __init__(self) -> None: logger.info("📡 初始化RayServeVoxCPMClient...") try: # Ray Serve API URL (can be overridden via env) self.RAY_SERVE_DEFAULT_URL = "https://d09181959-pytorch251-cuda124-u-5512-sj7yq0o5-8970.550c.cloud" self.api_url = self._resolve_server_url() logger.info(f"🔗 准备连接到Ray Serve API: {self.api_url}") # Test connection logger.info("⏳ 测试Ray Serve连接...") health_start = time.time() health_response = requests.get(f"{self.api_url}/health", timeout=10) health_response.raise_for_status() health_time = time.time() - health_start logger.info(f"✅ 成功连接到Ray Serve API: {self.api_url} (耗时: {health_time:.3f}秒)") except Exception as e: logger.error(f"❌ 初始化RayServeVoxCPMClient失败: {e}") logger.error(f"错误详情: {traceback.format_exc()}") raise # ----------- Helpers ----------- def _resolve_server_url(self) -> str: """Resolve Ray Serve API base URL, prefer env RAY_SERVE_URL.""" return os.environ.get("RAY_SERVE_URL", self.RAY_SERVE_DEFAULT_URL).rstrip("/") def _audio_file_to_base64(self, audio_file_path: str) -> str: """ 将音频文件转换为base64编码 Args: audio_file_path: 音频文件路径 Returns: base64编码的音频数据 """ try: with open(audio_file_path, 'rb') as f: audio_bytes = f.read() return base64.b64encode(audio_bytes).decode('utf-8') except Exception as e: logger.error(f"音频文件转base64失败: {e}") raise def _base64_to_audio_array(self, base64_audio: str, sample_rate: int = 16000) -> Tuple[int, np.ndarray]: """ 将base64编码的音频转换为numpy数组 Args: base64_audio: base64编码的音频数据 sample_rate: 期望的采样率 Returns: (sample_rate, audio_array) tuple """ try: # 解码base64 audio_bytes = base64.b64decode(base64_audio) # 创建临时文件 with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file: tmp_file.write(audio_bytes) tmp_file_path = tmp_file.name # 读取音频文件 try: audio_data, sr = sf.read(tmp_file_path, dtype='float32') # 转换为单声道 if audio_data.ndim == 2: audio_data = audio_data[:, 0] # 转换为int16格式(Gradio期望的格式) audio_int16 = (audio_data * 32767).astype(np.int16) return sr, audio_int16 finally: # 清理临时文件 try: os.unlink(tmp_file_path) except: pass except Exception as e: logger.error(f"base64转音频数组失败: {e}") raise # ----------- Functional endpoints ----------- def prompt_wav_recognition(self, prompt_wav: Optional[str]) -> str: """Use Ray Serve ASR API for speech recognition.""" logger.info(f"🎵 开始语音识别,输入文件: {prompt_wav}") if prompt_wav is None or not prompt_wav.strip(): logger.info("⚠️ 没有提供音频文件,跳过语音识别") return "" try: start_time = time.time() # 将音频文件转换为base64 convert_start = time.time() audio_base64 = self._audio_file_to_base64(prompt_wav) convert_time = time.time() - convert_start # 构建ASR请求 - 匹配 voxcpm_api.py 格式 asr_request = { "audio_data": audio_base64, "language": "auto", "use_itn": True, "reqid": str(uuid.uuid4()) } # 调用ASR接口 api_start = time.time() response = requests.post( f"{self.api_url}/asr", json=asr_request, headers={"Content-Type": "application/json"}, timeout=30 ) response.raise_for_status() api_time = time.time() - api_start result_data = response.json() total_time = time.time() - start_time logger.info(f"⏱️ ASR API请求耗时: {api_time:.3f}秒") logger.info(f"⏱️ ASR总耗时: {total_time:.3f}秒") logger.info(f"🔍 完整的ASR响应: {result_data}") # 检查响应状态 - 基于实际响应格式,ASR有多种成功标识 if isinstance(result_data, dict) and "text" in result_data and ( result_data.get("code") == 3000 or result_data.get("status") == "ok" ): recognized_text = result_data.get("text", "") logger.info(f"🎯 识别结果: '{recognized_text}'") return recognized_text else: logger.warning(f"⚠️ ASR响应验证失败:") if isinstance(result_data, dict): logger.warning(f" - code字段: {result_data.get('code')}") logger.warning(f" - 是否有text字段: {'text' in result_data}") logger.warning(f" - message字段: {result_data.get('message')}") logger.warning(f"⚠️ 完整ASR响应: {result_data}") return "" except Exception as e: logger.error(f"❌ 语音识别失败: {e}") logger.error(f"错误详情: {traceback.format_exc()}") return "" def _call_ray_serve_generate( self, text: str, prompt_wav_path: Optional[str] = None, prompt_text: Optional[str] = None, cfg_value: float = 2.0, inference_timesteps: int = 10, do_normalize: bool = True, denoise: bool = True, ) -> Tuple[int, np.ndarray]: """ Call Ray Serve /generate API and return (sample_rate, waveform). """ try: start_time = time.time() # 构建请求数据 - 匹配 voxcpm_api.py 格式 prepare_start = time.time() request_data = { "text": text, "cfg_value": cfg_value, "inference_timesteps": inference_timesteps, "do_normalize": do_normalize, "denoise": denoise, "reqid": str(uuid.uuid4()) } # 如果有参考音频和文本,添加到请求中 if prompt_wav_path and prompt_text: logger.info("🎭 使用语音克隆模式") convert_start = time.time() audio_base64 = self._audio_file_to_base64(prompt_wav_path) convert_time = time.time() - convert_start request_data.update({ "prompt_wav": audio_base64, "prompt_text": prompt_text }) else: logger.info("🎤 使用默认语音模式") prepare_time = time.time() - prepare_start # 调用生成接口 api_start = time.time() response = requests.post( f"{self.api_url}/generate", json=request_data, headers={"Content-Type": "application/json"}, timeout=120 # TTS可能需要较长时间 ) response.raise_for_status() api_time = time.time() - api_start result_data = response.json() # 检查响应状态 - 基于实际响应格式,TTS响应没有code字段,只检查data if isinstance(result_data, dict) and "data" in result_data and isinstance(result_data["data"], str) and result_data["data"]: # 成功生成音频 audio_base64 = result_data["data"] # 将base64音频转换为numpy数组 decode_start = time.time() sample_rate, audio_array = self._base64_to_audio_array(audio_base64) decode_time = time.time() - decode_start total_time = time.time() - start_time logger.info(f"📈 性能指标: API={api_time:.3f}s, 解码={decode_time:.3f}s, 总计={total_time:.3f}s") return sample_rate, audio_array else: logger.error(f"❌ 响应验证失败:") logger.error(f" - 是否为字典: {isinstance(result_data, dict)}") if isinstance(result_data, dict): logger.error(f" - 是否有data字段: {'data' in result_data}") if "data" in result_data: logger.error(f" - data字段类型: {type(result_data['data'])}") logger.error(f" - data字段是否为字符串: {isinstance(result_data['data'], str)}") if isinstance(result_data['data'], str): logger.error(f" - data字段是否非空: {bool(result_data['data'])}") logger.error(f" - data字段长度: {len(result_data['data'])}") logger.error(f"❌ 完整响应内容: {result_data}") raise RuntimeError(f"Ray Serve没有返回有效的音频数据。响应: {result_data}") except requests.exceptions.RequestException as e: logger.error(f"❌ Ray Serve请求失败: {e}") raise RuntimeError(f"Failed to connect Ray Serve TTS service: {e}. Check RAY_SERVE_URL='{self.api_url}' and service status") except Exception as e: logger.error(f"❌ Ray Serve调用异常: {e}") raise def generate_tts_audio( self, text_input: str, prompt_wav_path_input: Optional[str] = None, prompt_text_input: Optional[str] = None, cfg_value_input: float = 2.0, inference_timesteps_input: int = 10, do_normalize: bool = True, denoise: bool = True, ) -> Tuple[int, np.ndarray]: logger.info("🎤 开始TTS音频生成...") logger.info(f"📝 输入文本: '{text_input}'") logger.info(f"📄 参考文本: '{prompt_text_input}' " if prompt_text_input else "无") logger.info(f"⚙️ CFG值: {cfg_value_input}, 推理步数: {inference_timesteps_input}") logger.info(f"🔧 文本正则: {do_normalize}, 音频降噪: {denoise}") try: text = (text_input or "").strip() if len(text) == 0: logger.error("❌ 输入文本为空") raise ValueError("Please input text to synthesize.") prompt_wav_path = prompt_wav_path_input or "" prompt_text = prompt_text_input or "" cfg_value = cfg_value_input if cfg_value_input is not None else 2.0 inference_timesteps = inference_timesteps_input if inference_timesteps_input is not None else 10 sr, wav_np = self._call_ray_serve_generate( text=text, prompt_wav_path=prompt_wav_path, prompt_text=prompt_text, cfg_value=cfg_value, inference_timesteps=inference_timesteps, do_normalize=do_normalize, denoise=denoise, ) return (sr, wav_np) except Exception as e: logger.error(f"❌ TTS音频生成失败: {e}") logger.error(f"错误详情: {traceback.format_exc()}") raise # ---------- UI Builders ---------- def create_demo_interface(client: RayServeVoxCPMClient): """Build the Gradio UI for Gradio API VoxCPM client.""" logger.info("🎨 开始创建Gradio界面...") try: assets_path = Path.cwd().absolute()/"assets" logger.info(f"📁 设置静态资源路径: {assets_path}") gr.set_static_paths(paths=[assets_path]) logger.info("✅ 静态资源路径设置完成") except Exception as e: logger.warning(f"⚠️ 静态资源路径设置失败: {e}") logger.warning("继续创建界面...") with gr.Blocks( theme=gr.themes.Soft( primary_hue="blue", secondary_hue="gray", neutral_hue="slate", font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"] ), css=""" .logo-container { text-align: center; margin: 0.5rem 0 1rem 0; } .logo-container img { height: 80px; width: auto; max-width: 200px; display: inline-block; } /* Bold labels for specific checkboxes */ #chk_denoise label, #chk_denoise span, #chk_normalize label, #chk_normalize span { font-weight: 600; } """ ) as interface: gr.HTML('