Abhishek Gola
commited on
Commit
·
fc4a671
1
Parent(s):
44c131e
Added license plate detection to opencv spaces
Browse files- README.md +6 -0
- app.py +57 -0
- lpd_yunet.py +136 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -7,6 +7,12 @@ sdk: gradio
|
|
7 |
sdk_version: 5.34.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
7 |
sdk_version: 5.34.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: License plate detection with yunet using OpenCV
|
11 |
+
tags:
|
12 |
+
- opencv
|
13 |
+
- license-plate-detection
|
14 |
+
- yunet
|
15 |
+
- LPD-yunet
|
16 |
---
|
17 |
|
18 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2 as cv
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from lpd_yunet import LPD_YuNet
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
# Download ONNX model from Hugging Face
|
8 |
+
model_path = hf_hub_download(
|
9 |
+
repo_id="opencv/license_plate_detection_yunet",
|
10 |
+
filename="license_plate_detection_lpd_yunet_2023mar.onnx"
|
11 |
+
)
|
12 |
+
|
13 |
+
# Initialize LPD-YuNet model
|
14 |
+
model = LPD_YuNet(
|
15 |
+
modelPath=model_path,
|
16 |
+
confThreshold=0.9,
|
17 |
+
nmsThreshold=0.3,
|
18 |
+
topK=5000,
|
19 |
+
keepTopK=750,
|
20 |
+
backendId=cv.dnn.DNN_BACKEND_OPENCV,
|
21 |
+
targetId=cv.dnn.DNN_TARGET_CPU
|
22 |
+
)
|
23 |
+
|
24 |
+
def visualize(image, dets, line_color=(0, 255, 0), text_color=(0, 0, 255)):
|
25 |
+
output = image.copy()
|
26 |
+
for det in dets:
|
27 |
+
bbox = det[:-1].astype(np.int32)
|
28 |
+
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
|
29 |
+
cv.line(output, (x1, y1), (x2, y2), line_color, 2)
|
30 |
+
cv.line(output, (x2, y2), (x3, y3), line_color, 2)
|
31 |
+
cv.line(output, (x3, y3), (x4, y4), line_color, 2)
|
32 |
+
cv.line(output, (x4, y4), (x1, y1), line_color, 2)
|
33 |
+
return output
|
34 |
+
|
35 |
+
def detect_license_plates(input_image):
|
36 |
+
input_image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
|
37 |
+
h, w, _ = input_image.shape
|
38 |
+
model.setInputSize([w, h])
|
39 |
+
results = model.infer(input_image)
|
40 |
+
if results is None or len(results) == 0:
|
41 |
+
return cv.cvtColor(input_image, cv.COLOR_BGR2RGB)
|
42 |
+
output = visualize(input_image, results)
|
43 |
+
output = cv.cvtColor(output, cv.COLOR_BGR2RGB)
|
44 |
+
return output
|
45 |
+
|
46 |
+
# Gradio Interface
|
47 |
+
demo = gr.Interface(
|
48 |
+
fn=detect_license_plates,
|
49 |
+
inputs=gr.Image(type="numpy", label="Upload Vehicle Image"),
|
50 |
+
outputs=gr.Image(type="numpy", label="Detected License Plates"),
|
51 |
+
title="License Plate Detection (LPD-YuNet)",
|
52 |
+
allow_flagging="never",
|
53 |
+
description="Upload a vehicle image to detect license plates using OpenCV's ONNX-based LPD-YuNet model."
|
54 |
+
)
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
demo.launch()
|
lpd_yunet.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import product
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import cv2 as cv
|
5 |
+
|
6 |
+
class LPD_YuNet:
|
7 |
+
def __init__(self, modelPath, inputSize=[320, 240], confThreshold=0.8, nmsThreshold=0.3, topK=5000, keepTopK=750, backendId=0, targetId=0):
|
8 |
+
self.model_path = modelPath
|
9 |
+
self.input_size = np.array(inputSize)
|
10 |
+
self.confidence_threshold=confThreshold
|
11 |
+
self.nms_threshold = nmsThreshold
|
12 |
+
self.top_k = topK
|
13 |
+
self.keep_top_k = keepTopK
|
14 |
+
self.backend_id = backendId
|
15 |
+
self.target_id = targetId
|
16 |
+
|
17 |
+
self.output_names = ['loc', 'conf', 'iou']
|
18 |
+
self.min_sizes = [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]]
|
19 |
+
self.steps = [8, 16, 32, 64]
|
20 |
+
self.variance = [0.1, 0.2]
|
21 |
+
|
22 |
+
# load model
|
23 |
+
self.model = cv.dnn.readNet(self.model_path)
|
24 |
+
# set backend and target
|
25 |
+
self.model.setPreferableBackend(self.backend_id)
|
26 |
+
self.model.setPreferableTarget(self.target_id)
|
27 |
+
# generate anchors/priorboxes
|
28 |
+
self._priorGen()
|
29 |
+
|
30 |
+
@property
|
31 |
+
def name(self):
|
32 |
+
return self.__class__.__name__
|
33 |
+
|
34 |
+
def setBackendAndTarget(self, backendId, targetId):
|
35 |
+
self.backend_id = backendId
|
36 |
+
self.target_id = targetId
|
37 |
+
self.model.setPreferableBackend(self.backend_id)
|
38 |
+
self.model.setPreferableTarget(self.target_id)
|
39 |
+
|
40 |
+
def setInputSize(self, inputSize):
|
41 |
+
self.input_size = inputSize
|
42 |
+
# re-generate anchors/priorboxes
|
43 |
+
self._priorGen()
|
44 |
+
|
45 |
+
def _preprocess(self, image):
|
46 |
+
return cv.dnn.blobFromImage(image)
|
47 |
+
|
48 |
+
def infer(self, image):
|
49 |
+
assert image.shape[0] == self.input_size[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self.input_size[1])
|
50 |
+
assert image.shape[1] == self.input_size[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self.input_size[0])
|
51 |
+
|
52 |
+
# Preprocess
|
53 |
+
inputBlob = self._preprocess(image)
|
54 |
+
|
55 |
+
# Forward
|
56 |
+
self.model.setInput(inputBlob)
|
57 |
+
outputBlob = self.model.forward(self.output_names)
|
58 |
+
|
59 |
+
# Postprocess
|
60 |
+
results = self._postprocess(outputBlob)
|
61 |
+
|
62 |
+
return results
|
63 |
+
|
64 |
+
def _postprocess(self, blob):
|
65 |
+
# Decode
|
66 |
+
dets = self._decode(blob)
|
67 |
+
|
68 |
+
# NMS
|
69 |
+
keepIdx = cv.dnn.NMSBoxes(
|
70 |
+
bboxes=dets[:, 0:4].tolist(),
|
71 |
+
scores=dets[:, -1].tolist(),
|
72 |
+
score_threshold=self.confidence_threshold,
|
73 |
+
nms_threshold=self.nms_threshold,
|
74 |
+
top_k=self.top_k
|
75 |
+
) # box_num x class_num
|
76 |
+
if len(keepIdx) > 0:
|
77 |
+
dets = dets[keepIdx]
|
78 |
+
return dets[:self.keep_top_k]
|
79 |
+
else:
|
80 |
+
return np.empty(shape=(0, 9))
|
81 |
+
|
82 |
+
def _priorGen(self):
|
83 |
+
w, h = self.input_size
|
84 |
+
feature_map_2th = [int(int((h + 1) / 2) / 2),
|
85 |
+
int(int((w + 1) / 2) / 2)]
|
86 |
+
feature_map_3th = [int(feature_map_2th[0] / 2),
|
87 |
+
int(feature_map_2th[1] / 2)]
|
88 |
+
feature_map_4th = [int(feature_map_3th[0] / 2),
|
89 |
+
int(feature_map_3th[1] / 2)]
|
90 |
+
feature_map_5th = [int(feature_map_4th[0] / 2),
|
91 |
+
int(feature_map_4th[1] / 2)]
|
92 |
+
feature_map_6th = [int(feature_map_5th[0] / 2),
|
93 |
+
int(feature_map_5th[1] / 2)]
|
94 |
+
|
95 |
+
feature_maps = [feature_map_3th, feature_map_4th,
|
96 |
+
feature_map_5th, feature_map_6th]
|
97 |
+
|
98 |
+
priors = []
|
99 |
+
for k, f in enumerate(feature_maps):
|
100 |
+
min_sizes = self.min_sizes[k]
|
101 |
+
for i, j in product(range(f[0]), range(f[1])): # i->h, j->w
|
102 |
+
for min_size in min_sizes:
|
103 |
+
s_kx = min_size / w
|
104 |
+
s_ky = min_size / h
|
105 |
+
|
106 |
+
cx = (j + 0.5) * self.steps[k] / w
|
107 |
+
cy = (i + 0.5) * self.steps[k] / h
|
108 |
+
|
109 |
+
priors.append([cx, cy, s_kx, s_ky])
|
110 |
+
self.priors = np.array(priors, dtype=np.float32)
|
111 |
+
|
112 |
+
def _decode(self, blob):
|
113 |
+
loc, conf, iou = blob
|
114 |
+
# get score
|
115 |
+
cls_scores = conf[:, 1]
|
116 |
+
iou_scores = iou[:, 0]
|
117 |
+
# clamp
|
118 |
+
_idx = np.where(iou_scores < 0.)
|
119 |
+
iou_scores[_idx] = 0.
|
120 |
+
_idx = np.where(iou_scores > 1.)
|
121 |
+
iou_scores[_idx] = 1.
|
122 |
+
scores = np.sqrt(cls_scores * iou_scores)
|
123 |
+
scores = scores[:, np.newaxis]
|
124 |
+
|
125 |
+
scale = self.input_size
|
126 |
+
|
127 |
+
# get four corner points for bounding box
|
128 |
+
bboxes = np.hstack((
|
129 |
+
(self.priors[:, 0:2] + loc[:, 4: 6] * self.variance[0] * self.priors[:, 2:4]) * scale,
|
130 |
+
(self.priors[:, 0:2] + loc[:, 6: 8] * self.variance[0] * self.priors[:, 2:4]) * scale,
|
131 |
+
(self.priors[:, 0:2] + loc[:, 10:12] * self.variance[0] * self.priors[:, 2:4]) * scale,
|
132 |
+
(self.priors[:, 0:2] + loc[:, 12:14] * self.variance[0] * self.priors[:, 2:4]) * scale
|
133 |
+
))
|
134 |
+
|
135 |
+
dets = np.hstack((bboxes, scores))
|
136 |
+
return dets
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
gradio
|
3 |
+
numpy
|
4 |
+
huggingface_hub
|