Spaces:
Sleeping
Sleeping
Abhishek Gola
commited on
Commit
·
89138dc
1
Parent(s):
71905ee
Added vit tracker to opencv spaces
Browse files- README.md +6 -0
- app.py +185 -0
- requirements.txt +4 -0
- vittrack.py +39 -0
README.md
CHANGED
@@ -7,6 +7,12 @@ sdk: gradio
|
|
7 |
sdk_version: 5.34.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
7 |
sdk_version: 5.34.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: Object tracking with ViTtracker using OpenCV
|
11 |
+
tags:
|
12 |
+
- opencv
|
13 |
+
- object-tracking
|
14 |
+
- vit
|
15 |
+
- vittracker
|
16 |
---
|
17 |
|
18 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2 as cv
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from vittrack import VitTrack
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
# Download ONNX model at startup
|
10 |
+
MODEL_PATH = hf_hub_download(
|
11 |
+
repo_id="opencv/object_tracking_vittrack",
|
12 |
+
filename="object_tracking_vittrack_2023sep.onnx"
|
13 |
+
)
|
14 |
+
|
15 |
+
backend_id = cv.dnn.DNN_BACKEND_OPENCV
|
16 |
+
target_id = cv.dnn.DNN_TARGET_CPU
|
17 |
+
|
18 |
+
# Global state
|
19 |
+
state = {
|
20 |
+
"points": [],
|
21 |
+
"bbox": None,
|
22 |
+
"video_path": None,
|
23 |
+
"first_frame": None
|
24 |
+
}
|
25 |
+
|
26 |
+
def load_first_frame(video_path):
|
27 |
+
"""Load video, grab first frame, reset state."""
|
28 |
+
state["video_path"] = video_path
|
29 |
+
cap = cv.VideoCapture(video_path)
|
30 |
+
has_frame, frame = cap.read()
|
31 |
+
cap.release()
|
32 |
+
if not has_frame:
|
33 |
+
return None
|
34 |
+
state["first_frame"] = frame.copy()
|
35 |
+
state["points"].clear()
|
36 |
+
state["bbox"] = None
|
37 |
+
return cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
38 |
+
|
39 |
+
|
40 |
+
def select_point(img, evt: gr.SelectData):
|
41 |
+
"""Accumulate up to 4 clicks, draw polygon + bounding box."""
|
42 |
+
if state["first_frame"] is None:
|
43 |
+
return None
|
44 |
+
|
45 |
+
x, y = int(evt.index[0]), int(evt.index[1])
|
46 |
+
if len(state["points"]) < 4:
|
47 |
+
state["points"].append((x, y))
|
48 |
+
|
49 |
+
vis = state["first_frame"].copy()
|
50 |
+
# draw each point
|
51 |
+
for pt in state["points"]:
|
52 |
+
cv.circle(vis, pt, 5, (0, 255, 0), -1)
|
53 |
+
# draw connecting polygon
|
54 |
+
if len(state["points"]) > 1:
|
55 |
+
pts = np.array(state["points"], dtype=np.int32)
|
56 |
+
cv.polylines(vis, [pts], isClosed=False, color=(255, 255, 0), thickness=2)
|
57 |
+
|
58 |
+
# once we have exactly 4, compute & draw bounding rect
|
59 |
+
if len(state["points"]) == 4:
|
60 |
+
pts = np.array(state["points"], dtype=np.int32)
|
61 |
+
x0, y0, w, h = cv.boundingRect(pts)
|
62 |
+
state["bbox"] = (x0, y0, w, h)
|
63 |
+
cv.rectangle(vis, (x0, y0), (x0 + w, y0 + h), (0, 0, 255), 2)
|
64 |
+
|
65 |
+
return cv.cvtColor(vis, cv.COLOR_BGR2RGB)
|
66 |
+
|
67 |
+
|
68 |
+
def clear_points():
|
69 |
+
"""Reset selected points only."""
|
70 |
+
state["points"].clear()
|
71 |
+
state["bbox"] = None
|
72 |
+
if state["first_frame"] is None:
|
73 |
+
return None
|
74 |
+
return cv.cvtColor(state["first_frame"], cv.COLOR_BGR2RGB)
|
75 |
+
|
76 |
+
|
77 |
+
def clear_all():
|
78 |
+
"""Reset everything."""
|
79 |
+
state["points"].clear()
|
80 |
+
state["bbox"] = None
|
81 |
+
state["video_path"] = None
|
82 |
+
state["first_frame"] = None
|
83 |
+
return None, None, None
|
84 |
+
|
85 |
+
|
86 |
+
def track_video():
|
87 |
+
"""Init VitTrack and process entire video, return output path."""
|
88 |
+
if state["video_path"] is None or state["bbox"] is None:
|
89 |
+
return None
|
90 |
+
|
91 |
+
# instantiate VitTrack
|
92 |
+
model = VitTrack(
|
93 |
+
model_path=MODEL_PATH,
|
94 |
+
backend_id=backend_id,
|
95 |
+
target_id= target_id
|
96 |
+
)
|
97 |
+
|
98 |
+
cap = cv.VideoCapture(state["video_path"])
|
99 |
+
fps = cap.get(cv.CAP_PROP_FPS)
|
100 |
+
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
|
101 |
+
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
|
102 |
+
|
103 |
+
# prepare temporary output file
|
104 |
+
tmpdir = tempfile.gettempdir()
|
105 |
+
out_path = os.path.join(tmpdir, "vittrack_output.mp4")
|
106 |
+
writer = cv.VideoWriter(
|
107 |
+
out_path,
|
108 |
+
cv.VideoWriter_fourcc(*"mp4v"),
|
109 |
+
fps,
|
110 |
+
(w, h)
|
111 |
+
)
|
112 |
+
|
113 |
+
# read & init on first frame
|
114 |
+
_, first_frame = cap.read()
|
115 |
+
model.init(first_frame, state["bbox"])
|
116 |
+
|
117 |
+
tm = cv.TickMeter()
|
118 |
+
while True:
|
119 |
+
has_frame, frame = cap.read()
|
120 |
+
if not has_frame:
|
121 |
+
break
|
122 |
+
tm.start()
|
123 |
+
isLocated, bbox, score = model.infer(frame)
|
124 |
+
tm.stop()
|
125 |
+
|
126 |
+
vis = frame.copy()
|
127 |
+
# overlay FPS
|
128 |
+
cv.putText(vis, f"FPS:{tm.getFPS():.2f}", (w//4, 30),
|
129 |
+
cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
130 |
+
# draw tracking box or loss message
|
131 |
+
if isLocated and score >= 0.3:
|
132 |
+
x, y, w_, h_ = bbox
|
133 |
+
cv.rectangle(vis, (x, y), (x + w_, y + h_), (0, 255, 0), 2)
|
134 |
+
cv.putText(vis, f"{score:.2f}", (x, y - 10),
|
135 |
+
cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
136 |
+
else:
|
137 |
+
cv.putText(vis, "Target lost!",
|
138 |
+
(w // 2, h//4),
|
139 |
+
cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 3)
|
140 |
+
|
141 |
+
writer.write(vis)
|
142 |
+
tm.reset()
|
143 |
+
|
144 |
+
cap.release()
|
145 |
+
writer.release()
|
146 |
+
return out_path
|
147 |
+
|
148 |
+
|
149 |
+
with gr.Blocks() as demo:
|
150 |
+
gr.Markdown("## VitTrack: Interactive Video Object Tracking")
|
151 |
+
gr.Markdown(
|
152 |
+
"""
|
153 |
+
**How to use this tool:**
|
154 |
+
|
155 |
+
1. **Upload a video** file (e.g., `.mp4` or `.avi`).
|
156 |
+
2. The **first frame** of the video will appear.
|
157 |
+
3. **Click exactly 4 points** on the object you want to track. These points should outline the object as closely as possible.
|
158 |
+
4. A **bounding box** will be drawn around the selected region automatically.
|
159 |
+
5. Click the **Track** button to start object tracking across the entire video.
|
160 |
+
6. The output video with tracking overlay will appear below.
|
161 |
+
|
162 |
+
You can also use:
|
163 |
+
- 🧹 **Clear Points** to reset the 4-point selection on the first frame.
|
164 |
+
- 🔄 **Clear All** to reset the uploaded video, frame, and selections.
|
165 |
+
"""
|
166 |
+
)
|
167 |
+
|
168 |
+
with gr.Row():
|
169 |
+
video_in = gr.File(label="Upload Video", file_types=[".mp4", ".avi"])
|
170 |
+
first_frame = gr.Image(label="First Frame", interactive=True)
|
171 |
+
output_video = gr.Video(label="Tracking Result")
|
172 |
+
|
173 |
+
with gr.Row():
|
174 |
+
track_btn = gr.Button("Track", variant="primary")
|
175 |
+
clear_pts_btn = gr.Button("Clear Points")
|
176 |
+
clear_all_btn = gr.Button("Clear All")
|
177 |
+
|
178 |
+
video_in.change(fn=load_first_frame, inputs=video_in, outputs=first_frame)
|
179 |
+
first_frame.select(fn=select_point, inputs=first_frame, outputs=first_frame)
|
180 |
+
clear_pts_btn.click(fn=clear_points, outputs=first_frame)
|
181 |
+
clear_all_btn.click(fn=clear_all, outputs=[video_in, first_frame, output_video])
|
182 |
+
track_btn.click(fn=track_video, outputs=output_video)
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
gradio
|
3 |
+
numpy
|
4 |
+
huggingface_hub
|
vittrack.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import cv2 as cv
|
6 |
+
|
7 |
+
class VitTrack:
|
8 |
+
def __init__(self, model_path, backend_id=0, target_id=0):
|
9 |
+
self.model_path = model_path
|
10 |
+
self.backend_id = backend_id
|
11 |
+
self.target_id = target_id
|
12 |
+
|
13 |
+
self.params = cv.TrackerVit_Params()
|
14 |
+
self.params.net = self.model_path
|
15 |
+
self.params.backend = self.backend_id
|
16 |
+
self.params.target = self.target_id
|
17 |
+
|
18 |
+
self.model = cv.TrackerVit_create(self.params)
|
19 |
+
|
20 |
+
@property
|
21 |
+
def name(self):
|
22 |
+
return self.__class__.__name__
|
23 |
+
|
24 |
+
def setBackendAndTarget(self, backend_id, target_id):
|
25 |
+
self.backend_id = backend_id
|
26 |
+
self.target_id = target_id
|
27 |
+
|
28 |
+
self.params.backend = self.backend_id
|
29 |
+
self.params.target = self.target_id
|
30 |
+
|
31 |
+
self.model = cv.TrackerVit_create(self.params)
|
32 |
+
|
33 |
+
def init(self, image, roi):
|
34 |
+
self.model.init(image, roi)
|
35 |
+
|
36 |
+
def infer(self, image):
|
37 |
+
is_located, bbox = self.model.update(image)
|
38 |
+
score = self.model.getTrackingScore()
|
39 |
+
return is_located, bbox, score
|