new model
Browse files
app.py
CHANGED
@@ -1,42 +1,42 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
import torch
|
4 |
-
torch.cuda.is_available = lambda: False # Force torch to disable CUDA
|
5 |
-
|
6 |
-
from unsloth import FastLanguageModel
|
7 |
-
|
8 |
-
|
9 |
-
# Force CPU mode
|
10 |
-
device = "cpu"
|
11 |
-
|
12 |
-
# Load the base model in CPU mode
|
13 |
-
base_model_name = "unsloth/Llama-3.2-3B-Instruct"
|
14 |
-
base_model, tokenizer = FastLanguageModel.from_pretrained(
|
15 |
-
model_name=base_model_name,
|
16 |
-
max_seq_length=2048,
|
17 |
-
dtype="float32", # Use float32 for CPU
|
18 |
-
load_in_4bit=False # Disable 4-bit quantization for CPU
|
19 |
-
)
|
20 |
-
base_model.to(device)
|
21 |
-
|
22 |
-
# Apply LoRA adapters in CPU mode
|
23 |
-
from peft import PeftModel
|
24 |
-
|
25 |
-
lora_model_name = "oskaralf/lora_model" # Replace with your LoRA model path
|
26 |
-
model = PeftModel.from_pretrained(base_model, lora_model_name)
|
27 |
-
model.to(device)
|
28 |
-
|
29 |
-
# Prepare for inference in CPU mode
|
30 |
-
FastLanguageModel.for_inference(model)
|
31 |
-
|
32 |
-
# Gradio interface
|
33 |
import gradio as gr
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
return response
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
MODEL_NAME = "oskaralf/model_merged"
|
5 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype="auto", device_map="auto")
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
7 |
+
|
8 |
+
def generate_response(prompt, max_length=128, temperature=0.7, top_p=0.9):
|
9 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
10 |
+
outputs = model.generate(
|
11 |
+
**inputs,
|
12 |
+
max_length=max_length,
|
13 |
+
temperature=temperature,
|
14 |
+
top_p=top_p,
|
15 |
+
pad_token_id=tokenizer.eos_token_id
|
16 |
+
)
|
17 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
return response
|
19 |
|
20 |
+
def interactive_app():
|
21 |
+
with gr.Blocks() as app:
|
22 |
+
gr.Markdown("# Coding Task Generator")
|
23 |
+
gr.Markdown("Generate coding tasks by entering a prompt below.")
|
24 |
+
|
25 |
+
prompt = gr.Textbox(label="Enter your prompt:", placeholder="e.g., Create a Python task involving recursion.")
|
26 |
+
max_length = gr.Slider(label="Max Length", minimum=16, maximum=512, value=128, step=16)
|
27 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1)
|
28 |
+
top_p = gr.Slider(label="Top-p Sampling", minimum=0.1, maximum=1.0, value=0.9, step=0.1)
|
29 |
+
generate_button = gr.Button("Generate Task")
|
30 |
+
|
31 |
+
output = gr.Textbox(label="Generated Task", lines=10)
|
32 |
+
|
33 |
+
generate_button.click(
|
34 |
+
generate_response,
|
35 |
+
inputs=[prompt, max_length, temperature, top_p],
|
36 |
+
outputs=output
|
37 |
+
)
|
38 |
+
|
39 |
+
return app
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
interactive_app().launch()
|