Spaces:
Runtime error
Runtime error
import glob | |
import json | |
import os | |
from dataclasses import dataclass | |
import dateutil | |
import numpy as np | |
from src.display.formatting import make_clickable_model | |
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType | |
from src.submission.check_validity import is_model_on_hub | |
class EvalResult: | |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.""" | |
eval_name: str # org_model_precision (uid) | |
full_model: str # org/model (path on hub) | |
org: str | |
model: str | |
revision: str # commit hash, "" if main | |
results: dict | |
precision: Precision = Precision.Unknown | |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ... | |
weight_type: WeightType = WeightType.Original # Original or Adapter | |
architecture: str = "Unknown" | |
license: str = "?" | |
likes: int = 0 | |
num_params: int = 0 | |
date: str = "" # submission date of request file | |
still_on_hub: bool = False | |
energy_score: str = "NA" # energy consumption in kWh, "NA" if not available | |
def init_from_json_file(self, json_filepath): | |
"""Inits the result from the specific model result file""" | |
with open(json_filepath) as fp: | |
data = json.load(fp) | |
config = data.get("config_general") | |
# Handle case where config_general is None | |
if config is None: | |
# Set default values | |
precision = Precision.Unknown | |
org_and_model = data.get("model_name", "Unknown/Unknown") | |
if not isinstance(org_and_model, str): | |
org_and_model = "Unknown/Unknown" | |
revision = "main" | |
else: | |
# Precision | |
precision = Precision.from_str(config.get("model_dtype")) | |
# Get revision | |
revision = config.get("model_sha", "") | |
# Get model and org | |
org_and_model = config.get("model_name", config.get("model_args", None)) | |
if isinstance(org_and_model, str): | |
org_and_model = org_and_model.split("/", 1) | |
else: | |
org_and_model = ["Unknown", "Unknown"] | |
# Already handled above | |
if len(org_and_model) == 1: | |
org = None | |
model = org_and_model[0] | |
result_key = f"{model}_{precision.value.name}" | |
else: | |
org = org_and_model[0] | |
model = org_and_model[1] | |
result_key = f"{org}_{model}_{precision.value.name}" | |
full_model = "/".join(org_and_model) | |
# Use a safe default for model_sha if config is None | |
model_sha = "main" | |
if config is not None: | |
model_sha = config.get("model_sha", "main") | |
still_on_hub, _, model_config = is_model_on_hub( | |
full_model, model_sha, trust_remote_code=True, test_tokenizer=False | |
) | |
architecture = "?" | |
if model_config is not None: | |
architectures = getattr(model_config, "architectures", None) | |
if architectures: | |
architecture = ";".join(architectures) | |
# Extract results available in this file (some results are split in several files) | |
results = {} | |
# Check if results key exists in the data | |
if "results" not in data: | |
# If no results, set all benchmarks to None | |
for task in Tasks: | |
task = task.value | |
results[task.benchmark] = None | |
else: | |
# Process results normally | |
for task in Tasks: | |
task = task.value | |
# We average all scores of a given metric (not all metrics are present in all files) | |
# Handle metrics that could be None in the JSON | |
metric_values = [] | |
# Define the expected metric name and alternative names for each benchmark | |
expected_metric = task.metric | |
alternative_metrics = [] | |
print(f"Processing benchmark: {task.benchmark}, expected metric: {expected_metric}") | |
# Set up alternative metric names based on the benchmark | |
if task.benchmark == "custom|folio:logical_reasoning|0": | |
if expected_metric != "folio_em": | |
alternative_metrics = ["folio_em"] | |
elif task.benchmark == "custom|telecom:qna|0": | |
if expected_metric != "telecom_qna_em": | |
alternative_metrics = ["telecom_qna_em"] | |
elif task.benchmark == "custom|3gpp:tsg|0": | |
if expected_metric != "em": | |
alternative_metrics = ["em"] | |
elif task.benchmark == "custom|math:problem_solving|0": | |
if expected_metric != "math_metric": | |
alternative_metrics = ["math_metric"] | |
elif task.benchmark == "custom|spider:text2sql|0": | |
if expected_metric != "sql_metric": | |
alternative_metrics = ["sql_metric"] | |
# Check for results with the benchmark name | |
for k, v in data["results"].items(): | |
if task.benchmark == k: | |
# Try the expected metric name first | |
metric_value = v.get(expected_metric) | |
# If not found, try alternative metric names | |
if metric_value is None: | |
for alt_metric in alternative_metrics: | |
if alt_metric in v: | |
metric_value = v.get(alt_metric) | |
break | |
if metric_value is not None: | |
metric_values.append(metric_value) | |
print(f"Found metric value for {task.benchmark}: {metric_value}") | |
accs = np.array([v for v in metric_values if v is not None]) | |
if len(accs) == 0: | |
# Also check the "all" section for metrics | |
if "all" in data["results"]: | |
all_results = data["results"]["all"] | |
print(f"Checking 'all' section for {task.benchmark}, available keys: {list(all_results.keys())}") | |
# Try the expected metric name first | |
metric_value = all_results.get(expected_metric) | |
# If not found, try alternative metric names | |
if metric_value is None: | |
for alt_metric in alternative_metrics: | |
if alt_metric in all_results: | |
metric_value = all_results.get(alt_metric) | |
print(f"Found alternative metric {alt_metric} in 'all' section") | |
break | |
if metric_value is not None: | |
accs = np.array([metric_value]) | |
print(f"Found metric value in 'all' section for {task.benchmark}: {metric_value}") | |
else: | |
results[task.benchmark] = None | |
continue | |
else: | |
results[task.benchmark] = None | |
continue | |
mean_acc = np.mean(accs) * 100.0 | |
results[task.benchmark] = mean_acc | |
print(f"Final result for {task.benchmark}: {mean_acc}") | |
# Extract energy score if available | |
energy_score = "NA" | |
if "energy_metrics" in data and data["energy_metrics"] is not None and data["energy_metrics"].get("enabled", False): | |
total_energy = data["energy_metrics"].get("total_energy", 0) | |
if total_energy > 0: | |
energy_score = f"{total_energy:.5f}" | |
return self( | |
eval_name=result_key, | |
full_model=full_model, | |
org=org, | |
model=model, | |
results=results, | |
precision=precision, | |
revision=revision, | |
still_on_hub=still_on_hub, | |
architecture=architecture, | |
energy_score=energy_score | |
) | |
def update_with_request_file(self, requests_path): | |
"""Finds the relevant request file for the current model and updates info with it""" | |
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name) | |
try: | |
with open(request_file, "r") as f: | |
request = json.load(f) | |
self.model_type = ModelType.from_str(request.get("model_type", "")) | |
self.weight_type = WeightType[request.get("weight_type", "Original")] | |
self.license = request.get("license", "?") | |
self.likes = request.get("likes", 0) | |
self.num_params = request.get("params", 0) | |
self.date = request.get("submitted_time", "") | |
self.architecture = request.get("architectures", "Unknown") # delete later | |
self.status = request.get("status", "FAILED") | |
except Exception: | |
self.status = "FAILED" | |
print(f'Could not find request file for {self.org}/{self.model} with "precision:{self.precision.value.name},model_type:{self.model_type}",license:{self.license},status:{self.status}') | |
def to_dict(self): | |
"""Converts the Eval Result to a dict compatible with our dataframe display""" | |
available_metrics = [v for v in self.results.values() if v is not None] | |
average = sum(available_metrics) / len([v for v in available_metrics if v is not None]) if available_metrics else None | |
data_dict = { | |
"eval_name": self.eval_name, # not a column, just a save name, | |
AutoEvalColumn.precision.name: self.precision.value.name, | |
AutoEvalColumn.model_type.name: self.model_type.value.name, | |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, | |
AutoEvalColumn.weight_type.name: self.weight_type.value.name, | |
AutoEvalColumn.architecture.name: self.architecture, | |
AutoEvalColumn.model.name: make_clickable_model(self.full_model), | |
AutoEvalColumn.revision.name: self.revision, | |
AutoEvalColumn.average.name: average, | |
AutoEvalColumn.license.name: self.license, | |
AutoEvalColumn.likes.name: self.likes, | |
AutoEvalColumn.params.name: self.num_params, | |
AutoEvalColumn.still_on_hub.name: self.still_on_hub, | |
AutoEvalColumn.energy_score.name: self.energy_score, | |
} | |
print(f"\nConverting to dict for model: {self.full_model}") | |
for task in Tasks: | |
result = self.results.get(task.value.benchmark) | |
print(f" Task: {task.value.col_name}, Benchmark: {task.value.benchmark}, Result: {result}") | |
data_dict[task.value.col_name] = "NA" if result is None else round(result, 2) | |
return data_dict | |
def get_request_file_for_model(requests_path, model_name, precision): | |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" | |
request_files = os.path.join( | |
requests_path, | |
f"{model_name}_eval_request_*.json", | |
) | |
request_files = glob.glob(request_files) | |
# Select correct request file (precision) | |
request_file = "" | |
request_files = sorted(request_files, reverse=True) | |
for tmp_request_file in request_files: | |
with open(tmp_request_file, "r") as f: | |
req_content = json.load(f) | |
if ( | |
req_content["status"] in ["FINISHED"] | |
and req_content["precision"] == precision.split(".")[-1] | |
): | |
request_file = tmp_request_file | |
return request_file | |
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: | |
"""From the path of the results folder root, extract all needed info for results""" | |
model_result_filepaths = [] | |
for root, _, files in os.walk(results_path): | |
# We should only have json files in model results | |
if len(files) == 0 or any([not f.endswith(".json") for f in files]): | |
continue | |
# Sort the files by date | |
try: | |
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) | |
except dateutil.parser._parser.ParserError: | |
files = [files[-1]] | |
for file in files: | |
model_result_filepaths.append(os.path.join(root, file)) | |
eval_results = {} | |
for model_result_filepath in model_result_filepaths: | |
try: | |
# Creation of result | |
print(f"\nProcessing file: {model_result_filepath}") | |
eval_result = EvalResult.init_from_json_file(model_result_filepath) | |
# Skip entries with Unknown/Unknown model name | |
if eval_result.full_model == "Unknown/Unknown": | |
print(f"Skipping invalid result file: {model_result_filepath}") | |
continue | |
print(f"Model: {eval_result.full_model}") | |
print(f"Results before update_with_request_file:") | |
for benchmark, value in eval_result.results.items(): | |
print(f" {benchmark}: {value}") | |
eval_result.update_with_request_file(requests_path) | |
print(f"Results after update_with_request_file:") | |
for benchmark, value in eval_result.results.items(): | |
print(f" {benchmark}: {value}") | |
# Store results of same eval together | |
eval_name = eval_result.eval_name | |
if eval_name in eval_results.keys(): | |
print(f"Updating existing results for {eval_name}") | |
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) | |
else: | |
print(f"Adding new results for {eval_name}") | |
eval_results[eval_name] = eval_result | |
except Exception as e: | |
print(f"Error processing result file {model_result_filepath}: {str(e)}") | |
continue | |
results = [] | |
for v in eval_results.values(): | |
try: | |
v.to_dict() # we test if the dict version is complete | |
results.append(v) | |
except KeyError: # not all eval values present | |
continue | |
return results |