Spaces:
No application file
No application file
Upload 4 files
Browse files
README.md
CHANGED
@@ -1,15 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
11 |
-
# optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
|
12 |
-
hf_oauth_expiration_minutes: 480
|
13 |
---
|
14 |
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: AgenticRAG
|
3 |
+
emoji: 🌖
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.29.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,380 +1,31 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import pandas as pd
|
6 |
-
from text_analyzer import TextAnalyzer
|
7 |
-
import json
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
class BasicAgent:
|
16 |
-
def __init__(self):
|
17 |
-
print("BasicAgent initialized.")
|
18 |
-
self.analyzer = TextAnalyzer()
|
19 |
-
|
20 |
-
def __call__(self, text: str) -> str:
|
21 |
-
print(f"Agent received text (first 50 chars): {text[:50]}...")
|
22 |
-
try:
|
23 |
-
resultado = self.analyzer(text)
|
24 |
-
|
25 |
-
# Formatear la respuesta según el tipo de texto
|
26 |
-
if resultado.get("tipo") == "historia_usuario":
|
27 |
-
return self._format_user_story_response(resultado)
|
28 |
-
elif resultado.get("tipo") == "pregunta_general":
|
29 |
-
return self._format_general_question_response(resultado)
|
30 |
-
else:
|
31 |
-
return f"Error: {resultado.get('error', 'Tipo de texto no reconocido')}"
|
32 |
-
except Exception as e:
|
33 |
-
error_msg = f"Error analizando el texto: {str(e)}"
|
34 |
-
print(error_msg)
|
35 |
-
return error_msg
|
36 |
-
|
37 |
-
def _format_user_story_response(self, resultado: dict) -> str:
|
38 |
-
"""Formatea la respuesta para una historia de usuario."""
|
39 |
-
respuesta = []
|
40 |
-
if resultado["tiene_ambiguedad"]:
|
41 |
-
respuesta.append("Se encontraron las siguientes ambigüedades:")
|
42 |
-
|
43 |
-
if resultado["ambiguedad_lexica"]:
|
44 |
-
respuesta.append("\nAmbigüedades léxicas:")
|
45 |
-
for amb in resultado["ambiguedad_lexica"]:
|
46 |
-
respuesta.append(f"- {amb}")
|
47 |
-
|
48 |
-
if resultado["ambiguedad_sintactica"]:
|
49 |
-
respuesta.append("\nAmbigüedades sintácticas:")
|
50 |
-
for amb in resultado["ambiguedad_sintactica"]:
|
51 |
-
respuesta.append(f"- {amb}")
|
52 |
-
|
53 |
-
respuesta.append(f"\nScore de ambigüedad: {resultado['score_ambiguedad']}")
|
54 |
-
respuesta.append("\nSugerencias de mejora:")
|
55 |
-
for sug in resultado["sugerencias"]:
|
56 |
-
respuesta.append(f"- {sug}")
|
57 |
-
else:
|
58 |
-
respuesta.append("No se encontraron ambigüedades en la historia de usuario.")
|
59 |
-
respuesta.append(f"Score de ambigüedad: {resultado['score_ambiguedad']}")
|
60 |
-
|
61 |
-
return "\n".join(respuesta)
|
62 |
-
|
63 |
-
def _format_general_question_response(self, resultado: dict) -> str:
|
64 |
-
"""Formatea la respuesta para una pregunta general."""
|
65 |
-
analisis = resultado["analisis"]
|
66 |
-
respuesta = []
|
67 |
-
|
68 |
-
respuesta.append("📝 Análisis de la pregunta:")
|
69 |
-
if analisis["is_question"]:
|
70 |
-
respuesta.append(f"• Tipo de pregunta: {analisis['question_type'] or 'No identificado'}")
|
71 |
-
|
72 |
-
if analisis["entities"]:
|
73 |
-
respuesta.append("\n🏷️ Entidades identificadas:")
|
74 |
-
for ent, label in analisis["entities"]:
|
75 |
-
respuesta.append(f"• {ent} ({label})")
|
76 |
-
|
77 |
-
if analisis["key_phrases"]:
|
78 |
-
respuesta.append("\n🔑 Frases clave identificadas:")
|
79 |
-
for phrase in analisis["key_phrases"]:
|
80 |
-
respuesta.append(f"• {phrase}")
|
81 |
-
|
82 |
-
if resultado["sugerencias"]:
|
83 |
-
respuesta.append("\n💡 Sugerencias:")
|
84 |
-
for sug in resultado["sugerencias"]:
|
85 |
-
respuesta.append(f"• {sug}")
|
86 |
-
|
87 |
-
return "\n".join(respuesta)
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
92 |
-
and displays the results.
|
93 |
-
"""
|
94 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
95 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
print(f"User logged in: {username}")
|
100 |
-
else:
|
101 |
-
print("User not logged in.")
|
102 |
-
return "Please Login to Hugging Face with the button.", None
|
103 |
|
104 |
-
api_url = DEFAULT_API_URL
|
105 |
-
questions_url = f"{api_url}/questions"
|
106 |
-
submit_url = f"{api_url}/submit"
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
agent = BasicAgent()
|
111 |
-
except Exception as e:
|
112 |
-
print(f"Error instantiating agent: {e}")
|
113 |
-
return f"Error initializing agent: {e}", None
|
114 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
115 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
116 |
-
print(agent_code)
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
print("Fetched questions list is empty.")
|
126 |
-
return "Fetched questions list is empty or invalid format.", None
|
127 |
-
print(f"Fetched {len(questions_data)} questions.")
|
128 |
-
except requests.exceptions.RequestException as e:
|
129 |
-
print(f"Error fetching questions: {e}")
|
130 |
-
return f"Error fetching questions: {e}", None
|
131 |
-
except requests.exceptions.JSONDecodeError as e:
|
132 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
133 |
-
print(f"Response text: {response.text[:500]}")
|
134 |
-
return f"Error decoding server response for questions: {e}", None
|
135 |
-
except Exception as e:
|
136 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
137 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
138 |
-
|
139 |
-
# 3. Run your Agent
|
140 |
-
results_log = []
|
141 |
-
answers_payload = []
|
142 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
143 |
-
for item in questions_data:
|
144 |
-
task_id = item.get("task_id")
|
145 |
-
question_text = item.get("question")
|
146 |
-
if not task_id or question_text is None:
|
147 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
148 |
-
continue
|
149 |
-
try:
|
150 |
-
submitted_answer = agent(question_text)
|
151 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
152 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
153 |
-
except Exception as e:
|
154 |
-
print(f"Error running agent on task {task_id}: {e}")
|
155 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
156 |
-
|
157 |
-
if not answers_payload:
|
158 |
-
print("Agent did not produce any answers to submit.")
|
159 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
160 |
-
|
161 |
-
# 4. Prepare Submission
|
162 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
163 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
164 |
-
print(status_update)
|
165 |
-
|
166 |
-
# 5. Submit
|
167 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
168 |
-
try:
|
169 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
170 |
-
response.raise_for_status()
|
171 |
-
result_data = response.json()
|
172 |
-
final_status = (
|
173 |
-
f"Submission Successful!\n"
|
174 |
-
f"User: {result_data.get('username')}\n"
|
175 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
176 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
177 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
178 |
-
)
|
179 |
-
print("Submission successful.")
|
180 |
-
results_df = pd.DataFrame(results_log)
|
181 |
-
return final_status, results_df
|
182 |
-
except requests.exceptions.HTTPError as e:
|
183 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
184 |
-
try:
|
185 |
-
error_json = e.response.json()
|
186 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
187 |
-
except requests.exceptions.JSONDecodeError:
|
188 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
189 |
-
status_message = f"Submission Failed: {error_detail}"
|
190 |
-
print(status_message)
|
191 |
-
results_df = pd.DataFrame(results_log)
|
192 |
-
return status_message, results_df
|
193 |
-
except requests.exceptions.Timeout:
|
194 |
-
status_message = "Submission Failed: The request timed out."
|
195 |
-
print(status_message)
|
196 |
-
results_df = pd.DataFrame(results_log)
|
197 |
-
return status_message, results_df
|
198 |
-
except requests.exceptions.RequestException as e:
|
199 |
-
status_message = f"Submission Failed: Network error - {e}"
|
200 |
-
print(status_message)
|
201 |
-
results_df = pd.DataFrame(results_log)
|
202 |
-
return status_message, results_df
|
203 |
-
except Exception as e:
|
204 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
205 |
-
print(status_message)
|
206 |
-
results_df = pd.DataFrame(results_log)
|
207 |
-
return status_message, results_df
|
208 |
-
|
209 |
-
|
210 |
-
# Inicializar el clasificador
|
211 |
-
classifier = TextAnalyzer()
|
212 |
-
|
213 |
-
def analyze_text(text: str) -> str:
|
214 |
-
"""Analiza un texto y determina automáticamente si es una historia de usuario o una pregunta general."""
|
215 |
-
if not text.strip():
|
216 |
-
return "Por favor, ingrese un texto para analizar."
|
217 |
-
|
218 |
-
# Analizar el texto
|
219 |
-
result = classifier(text)
|
220 |
-
|
221 |
-
# Formatear resultados según el tipo
|
222 |
-
output = []
|
223 |
-
output.append(f"📝 Texto analizado:\n{text}\n")
|
224 |
-
|
225 |
-
if result.get("tipo") == "historia_usuario":
|
226 |
-
output.append("📋 Tipo: Historia de Usuario")
|
227 |
-
output.append(f"🎯 Score de ambigüedad: {result['score_ambiguedad']}")
|
228 |
-
|
229 |
-
if result['ambiguedad_lexica']:
|
230 |
-
output.append("\n📚 Ambigüedades léxicas encontradas:")
|
231 |
-
for amb in result['ambiguedad_lexica']:
|
232 |
-
output.append(f"• {amb}")
|
233 |
-
|
234 |
-
if result['ambiguedad_sintactica']:
|
235 |
-
output.append("\n🔍 Ambigüedades sintácticas encontradas:")
|
236 |
-
for amb in result['ambiguedad_sintactica']:
|
237 |
-
output.append(f"• {amb}")
|
238 |
-
|
239 |
-
if result['sugerencias']:
|
240 |
-
output.append("\n💡 Sugerencias de mejora:")
|
241 |
-
for sug in result['sugerencias']:
|
242 |
-
output.append(f"• {sug}")
|
243 |
-
|
244 |
-
elif result.get("tipo") == "pregunta_general":
|
245 |
-
output.append("📋 Tipo: Pregunta General")
|
246 |
-
analisis = result['analisis']
|
247 |
-
|
248 |
-
if analisis['is_question']:
|
249 |
-
output.append(f"❓ Tipo de pregunta: {analisis['question_type'] or 'No identificado'}")
|
250 |
-
|
251 |
-
if analisis['entities']:
|
252 |
-
output.append("\n🏷️ Entidades identificadas:")
|
253 |
-
for ent, label in analisis['entities']:
|
254 |
-
output.append(f"• {ent} ({label})")
|
255 |
-
|
256 |
-
if analisis['key_phrases']:
|
257 |
-
output.append("\n🔑 Frases clave:")
|
258 |
-
for phrase in analisis['key_phrases']:
|
259 |
-
output.append(f"• {phrase}")
|
260 |
-
|
261 |
-
output.append("\n💡 Sugerencias:")
|
262 |
-
for sug in result['sugerencias']:
|
263 |
-
output.append(f"• {sug}")
|
264 |
-
|
265 |
-
else:
|
266 |
-
output.append("❌ Error: No se pudo determinar el tipo de texto")
|
267 |
-
|
268 |
-
return "\n".join(output)
|
269 |
-
|
270 |
-
def analyze_multiple_texts(texts: str) -> str:
|
271 |
-
"""Analiza múltiples textos separados por líneas."""
|
272 |
-
if not texts.strip():
|
273 |
-
return "Por favor, ingrese al menos un texto para analizar."
|
274 |
-
|
275 |
-
texts_list = [t.strip() for t in texts.split('\n') if t.strip()]
|
276 |
-
all_results = []
|
277 |
-
|
278 |
-
for text in texts_list:
|
279 |
-
result = classifier(text)
|
280 |
-
result["texto_original"] = text
|
281 |
-
all_results.append(result)
|
282 |
-
|
283 |
-
return json.dumps(all_results, indent=2, ensure_ascii=False)
|
284 |
-
|
285 |
-
# --- Build Gradio Interface using Blocks ---
|
286 |
-
with gr.Blocks(title="Analizador de Textos") as demo:
|
287 |
-
gr.Markdown("""
|
288 |
-
# 🔍 Analizador de Textos
|
289 |
-
|
290 |
-
Esta herramienta analiza dos tipos de texto:
|
291 |
-
1. **Historias de Usuario**: Detecta ambigüedades léxicas y sintácticas
|
292 |
-
2. **Preguntas Generales**: Analiza estructura y contexto
|
293 |
-
|
294 |
-
## 📝 Instrucciones:
|
295 |
-
1. Ingrese su texto en el campo correspondiente
|
296 |
-
2. El sistema detectará automáticamente el tipo de texto
|
297 |
-
3. Revise el análisis detallado y las sugerencias
|
298 |
-
""")
|
299 |
-
|
300 |
-
with gr.Tab("Análisis Individual"):
|
301 |
-
input_text = gr.Textbox(
|
302 |
-
label="Texto a Analizar",
|
303 |
-
placeholder="Ingrese una historia de usuario o una pregunta general...",
|
304 |
-
lines=3
|
305 |
-
)
|
306 |
-
analyze_btn = gr.Button("Analizar")
|
307 |
-
output = gr.Textbox(
|
308 |
-
label="Resultados del Análisis",
|
309 |
-
lines=10
|
310 |
-
)
|
311 |
-
analyze_btn.click(
|
312 |
-
analyze_text,
|
313 |
-
inputs=[input_text],
|
314 |
-
outputs=[output]
|
315 |
-
)
|
316 |
-
|
317 |
-
with gr.Tab("Análisis Múltiple"):
|
318 |
-
input_texts = gr.Textbox(
|
319 |
-
label="Textos a Analizar (uno por línea)",
|
320 |
-
placeholder="Como usuario quiero...\n¿Cuál es el proceso para...?\n",
|
321 |
-
lines=5
|
322 |
-
)
|
323 |
-
analyze_multi_btn = gr.Button("Analizar Todos")
|
324 |
-
output_json = gr.JSON(label="Resultados del Análisis")
|
325 |
-
analyze_multi_btn.click(
|
326 |
-
analyze_multiple_texts,
|
327 |
-
inputs=[input_texts],
|
328 |
-
outputs=[output_json]
|
329 |
-
)
|
330 |
-
|
331 |
-
gr.Markdown("""
|
332 |
-
## 🚀 Ejemplos
|
333 |
-
|
334 |
-
### Historias de Usuario:
|
335 |
-
- Como usuario quiero un sistema rápido y eficiente para gestionar mis tareas
|
336 |
-
- El sistema debe permitir exportar varios tipos de archivos
|
337 |
-
- Como administrador necesito acceder fácilmente a los reportes
|
338 |
-
|
339 |
-
### Preguntas Generales:
|
340 |
-
- ¿Cuál es el proceso para recuperar una contraseña olvidada?
|
341 |
-
- ¿Cómo puedo generar un reporte mensual de ventas?
|
342 |
-
- ¿Dónde encuentro la documentación del API?
|
343 |
-
""")
|
344 |
-
|
345 |
-
gr.LoginButton()
|
346 |
-
|
347 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
348 |
-
|
349 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
350 |
-
# Removed max_rows=10 from DataFrame constructor
|
351 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
352 |
-
|
353 |
-
run_button.click(
|
354 |
-
fn=run_and_submit_all,
|
355 |
-
outputs=[status_output, results_table]
|
356 |
-
)
|
357 |
|
358 |
if __name__ == "__main__":
|
359 |
-
|
360 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
361 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
362 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
363 |
-
|
364 |
-
if space_host_startup:
|
365 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
366 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
367 |
-
else:
|
368 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
369 |
-
|
370 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
371 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
372 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
373 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
374 |
-
else:
|
375 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
376 |
-
|
377 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
378 |
-
|
379 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
380 |
-
demo.launch(debug=True, share=False)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import random
|
3 |
+
from smolagents import GradioUI, CodeAgent, HfApiModel
|
|
|
|
|
|
|
4 |
|
5 |
+
# Import our custom tools from their modules
|
6 |
+
from tools import DuckDuckGoSearchTool, CurrencyConverterTool
|
7 |
+
from retriever import load_guest_dataset
|
8 |
|
9 |
+
# Initialize the Hugging Face model
|
10 |
+
model = HfApiModel()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Initialize the web search tool
|
13 |
+
search_tool = DuckDuckGoSearchTool()
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Initialize the weather tool
|
16 |
+
currency_converter_tool = CurrencyConverterTool()
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
18 |
|
19 |
+
# Load the guest dataset and initialize the guest info tool
|
20 |
+
guest_info_tool = load_guest_dataset()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Create Alfred with all the tools
|
23 |
+
alfred = CodeAgent(
|
24 |
+
tools=[currency_converter_tool, search_tool],
|
25 |
+
model=model,
|
26 |
+
add_base_tools=True, # Add any additional base tools
|
27 |
+
planning_interval=3 # Enable planning every 3 steps
|
28 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
if __name__ == "__main__":
|
31 |
+
GradioUI(alfred).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,15 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
torch>=2.0.0
|
7 |
-
numpy>=1.24.0
|
8 |
-
pandas>=2.2.0
|
9 |
-
pytesseract>=0.3.10
|
10 |
-
opencv-python>=4.8.0
|
11 |
-
librosa>=0.10.1
|
12 |
-
Pillow>=10.0.0
|
13 |
-
openpyxl>=3.1.2
|
14 |
-
scikit-learn>=1.3.0
|
15 |
-
setuptools>=69.1.0
|
|
|
1 |
+
datasets
|
2 |
+
smolagents
|
3 |
+
langchain-community
|
4 |
+
rank_bm25
|
5 |
+
duckduckgo-search
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import DuckDuckGoSearchTool
|
2 |
+
from smolagents import Tool
|
3 |
+
|
4 |
+
|
5 |
+
# Initialize the DuckDuckGo search tool
|
6 |
+
search_tool = DuckDuckGoSearchTool()
|
7 |
+
|
8 |
+
|
9 |
+
import random
|
10 |
+
|
11 |
+
class CurrencyConverterTool(Tool):
|
12 |
+
name = "currency_converter"
|
13 |
+
description = "Converts amounts between different currencies using dummy exchange rates."
|
14 |
+
inputs = {
|
15 |
+
"amount": {
|
16 |
+
"type": "float",
|
17 |
+
"description": "The amount to convert."
|
18 |
+
},
|
19 |
+
"from_currency": {
|
20 |
+
"type": "string",
|
21 |
+
"description": "The source currency code (e.g., USD, EUR, CLP)."
|
22 |
+
},
|
23 |
+
"to_currency": {
|
24 |
+
"type": "string",
|
25 |
+
"description": "The target currency code (e.g., USD, EUR, CLP)."
|
26 |
+
}
|
27 |
+
}
|
28 |
+
output_type = "string"
|
29 |
+
|
30 |
+
def forward(self, amount: float, from_currency: str, to_currency: str):
|
31 |
+
# Dummy exchange rates (base: USD)
|
32 |
+
exchange_rates = {
|
33 |
+
"USD": 1.0,
|
34 |
+
"EUR": 0.85,
|
35 |
+
"CLP": 800.0,
|
36 |
+
"ARS": 350.0,
|
37 |
+
"BRL": 5.2,
|
38 |
+
"MXN": 18.5,
|
39 |
+
"GBP": 0.75,
|
40 |
+
"JPY": 110.0,
|
41 |
+
"CAD": 1.25
|
42 |
+
}
|
43 |
+
|
44 |
+
# Validate currencies
|
45 |
+
if from_currency not in exchange_rates or to_currency not in exchange_rates:
|
46 |
+
available_currencies = ", ".join(exchange_rates.keys())
|
47 |
+
return f"Error: Moneda no soportada. Divisas disponibles: {available_currencies}"
|
48 |
+
|
49 |
+
# Same currency conversion
|
50 |
+
if from_currency == to_currency:
|
51 |
+
return f"{amount:.2f} {from_currency} = {amount:.2f} {to_currency} (misma divisa)"
|
52 |
+
|
53 |
+
# Convert to USD first, then to target currency
|
54 |
+
usd_amount = amount / exchange_rates[from_currency]
|
55 |
+
converted_amount = usd_amount * exchange_rates[to_currency]
|
56 |
+
|
57 |
+
# Add small random variation to simulate real market fluctuations (±2%)
|
58 |
+
variation = random.uniform(-0.02, 0.02)
|
59 |
+
converted_amount *= (1 + variation)
|
60 |
+
|
61 |
+
return f"{amount:.2f} {from_currency} = {converted_amount:.2f} {to_currency} (tasa simulada)"
|
62 |
+
|