Spaces:
Sleeping
Sleeping
File size: 20,819 Bytes
dd5d2d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
import streamlit as st
import pandas as pd
import numpy as np
import joblib
import plotly.graph_objects as go
from sklearn.ensemble import RandomForestRegressor
class GEMMPredictor:
def __init__(self, model_path='model.joblib'):
self.stacked_model = joblib.load(model_path)
self.initialize_features()
def initialize_features(self):
"""Initialize features used by the model"""
# Core matrix features
self.core_features = [
'm', 'n', 'k',
'blocksize1', 'blocksize2', 'blocksize3'
]
# Derived features
self.derived_features = [
'arithmetic_intensity',
'bytes_accessed',
'total_flops'
]
# Categorical features
self.categorical_features = ['Layout']
# Target features
self.target_features = [
'runtime',
'power',
'Energy',
'TFlops'
]
self.numerical_features = self.core_features + self.derived_features
def calculate_gemm_characteristics(self, m, n, k, blocksize1, blocksize2, blocksize3):
"""Calculate GEMM-specific characteristics"""
total_flops = 2 * m * n * k # 2 operations per FMA
bytes_accessed = (m * k + k * n + m * n) * 4 # Single precision
arithmetic_intensity = total_flops / bytes_accessed
bound_type = 'compute' if arithmetic_intensity > 59 else 'memory'
return {
'total_flops': total_flops,
'bytes_accessed': bytes_accessed,
'arithmetic_intensity': arithmetic_intensity,
'bound_type': bound_type
}
def get_default_numeric_values(self):
"""Return default values for missing numeric features"""
return {
# Memory-related defaults
'total_memory': 12288, # 12GB for RTX 4070
'free_memory': 10240, # Assuming 80% free
'used_memory': 2048, # Assuming 20% used
'mem_util': 20.0, # 20% utilization
'mem_util2': 20.0, # Secondary memory utilization
# GPU state defaults
'temp': 65.0, # Default temperature
'gpu_util': 80.0, # Default GPU utilization
'gpu_util1': 80.0, # Secondary GPU utilization
'clock_sm': 2475, # Default SM clock for RTX 4070
'power_limit': 200.0, # Default power limit
'clocks.meme': 2000, # Memory clock speed
'alpha': 1.0, # Default scaling factor
'beta': 0.0, # Default scaling factor
'problem_size_m': 1024,
'problem_size_n': 1024,
'problem_size_k': 1024
}
def get_default_categorical_values(self):
"""Return default values for missing categorical features"""
return {
'stage': 'main',
'kernel_name': 'cutlass_simt_sgemm_128x128_8x2_nn_align1',
'computation_pattern': 'GEMM',
'combination_type': 'standard',
'state': 'active',
'uses_shared_memory': 'true',
'gpu_name': 'RTX4070'
}
def prepare_input_data(self, input_dict):
"""Prepare input data for prediction with default values for missing features"""
numeric_defaults = self.get_default_numeric_values()
categorical_defaults = self.get_default_categorical_values()
complete_input = {**numeric_defaults, **categorical_defaults}
complete_input.update(input_dict)
df = pd.DataFrame([complete_input])
characteristics = self.calculate_gemm_characteristics(
df['m'].iloc[0], df['n'].iloc[0], df['k'].iloc[0],
df['blocksize1'].iloc[0], df['blocksize2'].iloc[0], df['blocksize3'].iloc[0]
)
df['total_flops'] = characteristics['total_flops']
df['bytes_accessed'] = characteristics['bytes_accessed']
df['arithmetic_intensity'] = characteristics['arithmetic_intensity']
for col in self.categorical_features:
if col in df.columns:
df[col] = df[col].astype(str)
for col in self.numerical_features:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
return df
def estimate_power(df):
BASE_POWER = 30
MAX_POWER = 200
MAX_TFLOPS = 40
df['estimated_power'] = BASE_POWER + (
(MAX_POWER - BASE_POWER) *
(df['total_flops'] / (MAX_TFLOPS * 1e12))
)
df['power'] = df['power'].fillna(df['estimated_power'])
return df
def filter_power_bounds(df):
MIN_POWER = 25 # Minimum idle power
MAX_POWER = 200 # Maximum TDP
df = df[
(df['power'].between(MIN_POWER, MAX_POWER)) |
(df['power'].isna())
]
return df
def impute_power(df):
df['total_elements'] = df['m'] * df['n'] * df['k']
valid_power = df[df['power'].notna()]
features = ['total_elements', 'total_flops', 'arithmetic_intensity']
X = valid_power[features]
y = valid_power['power']
model = RandomForestRegressor(n_estimators=100)
model.fit(X, y)
missing_power = df[df['power'].isna()]
imputed_values = model.predict(missing_power[features])
df.loc[df['power'].isna(), 'power'] = imputed_values
return df
def preprocess_data(self, df):
"""Preprocess data focusing on GEMM characteristics with improved power handling"""
print("\nPreprocessing data...")
try:
df_processed = df.copy()
df_processed = df_processed.replace('[N/A]', np.nan)
df_processed = df_processed.replace('', np.nan)
df_processed = self.calculate_gemm_characteristics(df_processed)
df_processed['Layout'] = df_processed['Layout'].astype(str)
df_processed = self.estimate_power(df_processed)
df_processed = self.impute_power(df_processed)
df_processed = self.filter_power_bounds(df_processed)
for col in self.numerical_features:
if col in df_processed.columns:
df_processed[col] = pd.to_numeric(df_processed[col], errors='coerce')
Q1 = df_processed[col].quantile(0.01)
Q3 = df_processed[col].quantile(0.99)
df_processed[col] = df_processed[col].clip(Q1, Q3)
df_processed[col] = df_processed[col].fillna(df_processed[col].median())
print("Data preprocessing completed successfully")
print(f"Features summary:")
print(df_processed[self.numerical_features].describe())
return df_processed
except Exception as e:
print(f"Error in preprocess_data: {str(e)}")
raise
def predict(self, input_data):
"""Make predictions using the stacked model"""
df = self.prepare_input_data(input_data)
predictions = self.stacked_model.predict(df)
# Map predictions to target features
prediction_dict = {target: predictions[0][i] for i, target in enumerate(self.target_features)}
prediction_dict['characteristics'] = self.calculate_gemm_characteristics(
input_data['m'], input_data['n'], input_data['k'],
input_data['blocksize1'], input_data['blocksize2'], input_data['blocksize3']
)
return prediction_dict
def create_comparison_chart(current_metrics, optimal_metrics):
"""Create a comparison chart using plotly"""
metrics = ['Runtime (ms)', 'Power (W)', 'Energy (J)', 'TFLOPS']
current_values = [
current_metrics['runtime'],
current_metrics['power'],
current_metrics['Energy'],
current_metrics['TFlops']
]
optimal_values = [
optimal_metrics['runtime'],
optimal_metrics['power'],
optimal_metrics['Energy'],
optimal_metrics['TFlops']
]
fig = go.Figure(data=[
go.Bar(name='Current', x=metrics, y=current_values, marker_color='#ff7c43'),
go.Bar(name='Optimal', x=metrics, y=optimal_values, marker_color='#00ba38')
])
fig.update_layout(
barmode='group',
title='Performance Comparison',
xaxis_title='Metrics',
yaxis_title='Values',
height=400
)
return fig
def create_heatmap(m, n, k, block_m, block_n):
"""Create a heatmap visualization of the matrix blocking"""
grid_m = int(np.ceil(m / block_m))
grid_n = int(np.ceil(n / block_n))
grid = np.random.uniform(0.5, 1.0, (grid_m, grid_n))
fig = go.Figure(data=go.Heatmap(
z=grid,
colorscale='Viridis',
showscale=False
))
fig.update_layout(
title='Matrix Blocking Visualization',
xaxis_title='N dimension (columns)',
yaxis_title='M dimension (rows)',
height=300,
margin=dict(l=50, r=50, t=50, b=50)
)
return fig
def create_performance_metrics_chart(predictions):
"""Create a gauge chart for TFLOPS and other metrics"""
max_tflops = 40 # RTX 4070 theoretical max
tflops_percentage = (predictions['TFlops'] / max_tflops) * 100
fig = go.Figure(go.Indicator(
mode = "gauge+number",
value = predictions['TFlops'],
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "TFLOPS Performance"},
gauge = {
'axis': {'range': [None, max_tflops]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, max_tflops/3], 'color': "red"},
{'range': [max_tflops/3, 2*max_tflops/3], 'color': "yellow"},
{'range': [2*max_tflops/3, max_tflops], 'color': "green"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': predictions['TFlops']
}
}
))
fig.update_layout(height=300)
return fig
def create_efficiency_chart(arithmetic_intensity, mem_bandwidth_utilization, compute_utilization):
"""Create a spider chart showing various efficiency metrics"""
fig = go.Figure()
categories = ['Arithmetic Intensity', 'Memory BW Utilization', 'Compute Utilization']
fig.add_trace(go.Scatterpolar(
r=[arithmetic_intensity/200*100, mem_bandwidth_utilization, compute_utilization],
theta=categories,
fill='toself',
name='Current Configuration'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100]
)),
showlegend=False,
height=300
)
return fig
def main():
st.set_page_config(page_title="GEMM Performance Predictor", layout="wide")
st.markdown("""
<style>
.main {
padding: 2rem 1rem;
max-width: 100%;
}
.metric-card {
background-color: #f0f2f6;
padding: 1rem;
border-radius: 0.5rem;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
</style>
""", unsafe_allow_html=True)
st.title("GEMM Performance Predictor for RTX 4070")
try:
predictor = GEMMPredictor()
col1, col2, col3 = st.columns([1,1,1])
with col1:
st.subheader("Matrix Dimensions")
with st.expander("Set Matrix Dimensions", expanded=True):
m = st.number_input("M", min_value=1, value=512)
n = st.number_input("N", min_value=1, value=512)
k = st.number_input("K", min_value=1, value=1024)
with col2:
st.subheader("Block Sizes")
with st.expander("Set Block Dimensions", expanded=True):
blocksize1 = st.number_input("Block Size 1", min_value=1, value=512)
blocksize2 = st.number_input("Block Size 2", min_value=1, value=128)
blocksize3 = st.number_input("Block Size 3", min_value=1, value=512)
with col3:
st.subheader("Configuration")
with st.expander("Additional Settings", expanded=True):
layout = st.selectbox("Matrix Layout", ['nn', 'nt', 'tn', 'tt'])
kernel_name = st.selectbox(
"CUTLASS Kernel",
[
'cutlass_simt_sgemm_128x128_8x2_nn_align1',
'cutlass_simt_sgemm_128x128_8x2_nt_align1',
'cutlass_simt_sgemm_128x128_8x2_tn_align1',
'cutlass_simt_sgemm_128x128_8x2_tt_align1'
]
)
alpha = st.number_input("Alpha Scalar", value=1.00, step=0.25)
beta = st.number_input("Beta Scalar", value=0.50, step=0.25)
if st.button("Analyze Performance", use_container_width=True):
with st.spinner("Analyzing performance..."):
input_data = {
'm': m, 'n': n, 'k': k,
'blocksize1': blocksize1,
'blocksize2': blocksize2,
'blocksize3': blocksize3,
'Layout': layout,
'kernel_name': kernel_name,
'alpha': alpha,
'beta': beta
}
predictions = predictor.predict(input_data)
tab1, tab2, tab3 = st.tabs(["Performance Metrics", "Detailed Analysis", "Visualizations"])
with tab1:
st.subheader("GEMM Characteristics")
metric_col1, metric_col2, metric_col3, metric_col4 = st.columns(4)
with metric_col1:
st.metric(
"Arithmetic Intensity",
f"{predictions['characteristics']['arithmetic_intensity']:.2f}",
f"{predictions['characteristics']['bound_type'].upper()} bound"
)
with metric_col2:
st.metric(
"Total FLOPS",
f"{predictions['characteristics']['total_flops']/1e9:.2f}G",
"Operations"
)
with metric_col3:
st.metric(
"Memory Accessed",
f"{predictions['characteristics']['bytes_accessed']/1e6:.2f}MB",
"Total Data Movement"
)
with metric_col4:
memory_efficiency = min(100, predictions['characteristics']['bytes_accessed'] / (504 * 1e9) * 100)
st.metric(
"Memory Efficiency",
f"{memory_efficiency:.1f}%",
"vs Peak Bandwidth"
)
st.markdown("---")
perf_col1, perf_col2, perf_col3, perf_col4 = st.columns(4)
with perf_col1:
st.metric(
"Runtime",
f"{max(0.01, predictions['runtime']):.2f} ms",
"Execution Time"
)
with perf_col2:
st.metric(
"Power",
f"{max(1.0, predictions['power']):.2f} W",
"Power Consumption"
)
with perf_col3:
st.metric(
"Energy",
f"{max(0.01, predictions['Energy']):.2f} J",
"Total Energy"
)
with perf_col4:
efficiency = (predictions['TFlops'] / 40) * 100
st.metric(
"TFLOPS",
f"{predictions['TFlops']:.2f}",
f"{efficiency:.1f}% of Peak"
)
with tab2:
st.subheader("Detailed Performance Analysis")
col1, col2 = st.columns(2)
with col1:
st.markdown("#### Matrix Configuration")
st.markdown(f"""
- Total Matrix Elements: {m*n:,}
- Memory Footprint: {predictions['characteristics']['bytes_accessed']/1e6:.2f} MB
- Block Dimensions: {blocksize1}x{blocksize2}x{blocksize3}
- Grid Size: {m//blocksize1}x{n//blocksize2} blocks
""")
with col2:
st.markdown("#### Performance Bottlenecks")
ai = predictions['characteristics']['arithmetic_intensity']
if ai > 59:
st.success("✅ Compute Bound - Optimal for GPU")
else:
st.warning("⚠️ Memory Bound - Consider Optimization")
efficiency = (predictions['TFlops'] / 40) * 100
if efficiency < 30:
st.error("🔴 Low Compute Efficiency - Check Configuration")
elif efficiency < 60:
st.warning("🟡 Moderate Efficiency - Room for Improvement")
else:
st.success("🟢 Good Efficiency")
with tab3:
st.subheader("Performance Visualizations")
viz_col1, viz_col2 = st.columns(2)
with viz_col1:
st.plotly_chart(create_performance_metrics_chart(predictions), use_container_width=True)
with viz_col2:
mem_bw_util = min(100, predictions['characteristics']['bytes_accessed'] / (504 * 1e9) * 100)
compute_util = min(100, (predictions['TFlops'] / 40) * 100)
st.plotly_chart(
create_efficiency_chart(
predictions['characteristics']['arithmetic_intensity'],
mem_bw_util,
compute_util
),
use_container_width=True
)
st.plotly_chart(create_heatmap(m, n, k, blocksize1, blocksize2), use_container_width=True)
st.markdown("### Recommendations")
recommendations = []
if blocksize1 * blocksize2 > 1024:
recommendations.append("⚠️ Block size might be too large for optimal occupancy")
if predictions['characteristics']['arithmetic_intensity'] < 30:
recommendations.append("Consider increasing arithmetic intensity through blocking")
if efficiency < 50:
recommendations.append("Performance is below 50% of peak - try different block sizes")
if recommendations:
for rec in recommendations:
st.markdown(f"- {rec}")
else:
st.success("Current configuration appears optimal!")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.write("Please make sure the model file 'rtx4070_performance_models.joblib' is in the correct directory.")
st.write("If the error persists, check the input parameters and model compatibility.")
if __name__ == "__main__":
main() |