File size: 11,714 Bytes
0a82b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# MASt3R Fast Nearest Neighbor
# --------------------------------------------------------
import torch
import numpy as np
import math
from scipy.spatial import KDTree
import mast3r.utils.path_to_dust3r # noqa
from dust3r.utils.device import to_numpy, todevice # noqa
@torch.no_grad()
def bruteforce_reciprocal_nns(A, B, device="cuda", block_size=None, dist="l2"):
if isinstance(A, np.ndarray):
A = torch.from_numpy(A).to(device)
if isinstance(B, np.ndarray):
B = torch.from_numpy(B).to(device)
A = A.to(device)
B = B.to(device)
if dist == "l2":
dist_func = torch.cdist
argmin = torch.min
elif dist == "dot":
def dist_func(A, B):
return A @ B.T
def argmin(X, dim):
sim, nn = torch.max(X, dim=dim)
return sim.neg_(), nn
else:
raise ValueError(f"Unknown {dist=}")
if block_size is None or len(A) * len(B) <= block_size**2:
dists = dist_func(A, B)
_, nn_A = argmin(dists, dim=1)
_, nn_B = argmin(dists, dim=0)
else:
dis_A = torch.full((A.shape[0],), float("inf"), device=device, dtype=A.dtype)
dis_B = torch.full((B.shape[0],), float("inf"), device=device, dtype=B.dtype)
nn_A = torch.full((A.shape[0],), -1, device=device, dtype=torch.int64)
nn_B = torch.full((B.shape[0],), -1, device=device, dtype=torch.int64)
number_of_iteration_A = math.ceil(A.shape[0] / block_size)
number_of_iteration_B = math.ceil(B.shape[0] / block_size)
for i in range(number_of_iteration_A):
A_i = A[i * block_size : (i + 1) * block_size]
for j in range(number_of_iteration_B):
B_j = B[j * block_size : (j + 1) * block_size]
dists_blk = dist_func(A_i, B_j) # A, B, 1
# dists_blk = dists[i * block_size:(i+1)*block_size, j * block_size:(j+1)*block_size]
min_A_i, argmin_A_i = argmin(dists_blk, dim=1)
min_B_j, argmin_B_j = argmin(dists_blk, dim=0)
# Ensure dtype match
min_A_i = min_A_i.to(dis_A.dtype)
min_B_j = min_B_j.to(dis_B.dtype)
col_mask = min_A_i < dis_A[i * block_size : (i + 1) * block_size]
line_mask = min_B_j < dis_B[j * block_size : (j + 1) * block_size]
dis_A[i * block_size : (i + 1) * block_size][col_mask] = min_A_i[
col_mask
]
dis_B[j * block_size : (j + 1) * block_size][line_mask] = min_B_j[
line_mask
]
nn_A[i * block_size : (i + 1) * block_size][col_mask] = argmin_A_i[
col_mask
] + (j * block_size)
nn_B[j * block_size : (j + 1) * block_size][line_mask] = argmin_B_j[
line_mask
] + (i * block_size)
nn_A = nn_A.cpu().numpy()
nn_B = nn_B.cpu().numpy()
return nn_A, nn_B
class cdistMatcher:
def __init__(self, db_pts, device="cuda"):
self.db_pts = db_pts.to(device)
self.device = device
def query(self, queries, k=1, **kw):
assert k == 1
if queries.numel() == 0:
return None, []
nnA, nnB = bruteforce_reciprocal_nns(
queries, self.db_pts, device=self.device, **kw
)
dis = None
return dis, nnA
def merge_corres(idx1, idx2, shape1=None, shape2=None, ret_xy=True, ret_index=False):
assert idx1.dtype == idx2.dtype == np.int32
# unique and sort along idx1
corres = np.unique(np.c_[idx2, idx1].view(np.int64), return_index=ret_index)
if ret_index:
corres, indices = corres
xy2, xy1 = corres[:, None].view(np.int32).T
if ret_xy:
assert shape1 and shape2
xy1 = np.unravel_index(xy1, shape1)
xy2 = np.unravel_index(xy2, shape2)
if ret_xy != "y_x":
xy1 = xy1[0].base[:, ::-1]
xy2 = xy2[0].base[:, ::-1]
if ret_index:
return xy1, xy2, indices
return xy1, xy2
def fast_reciprocal_NNs(
pts1,
pts2,
subsample_or_initxy1=8,
ret_xy=True,
pixel_tol=0,
ret_basin=False,
device="cuda",
max_matches=None,
**matcher_kw,
):
H1, W1, DIM1 = pts1.shape
H2, W2, DIM2 = pts2.shape
assert DIM1 == DIM2
# flatten the dense features
# from [H1, W1, DIM] to [H1*W1, DIM]
pts1 = pts1.reshape(-1, DIM1)
pts2 = pts2.reshape(-1, DIM2)
if isinstance(subsample_or_initxy1, int) and pixel_tol == 0:
S = subsample_or_initxy1
# create a grid of points f.e when S = 8
# It creates a 2D grid of (y, x) coordinates,
# sampled every S pixels starting at S // 2,
# and then reshapes the grid into flat coordinate arrays.
y1, x1 = np.mgrid[S // 2 : H1 : S, S // 2 : W1 : S].reshape(2, -1)
max_iter = 10
else:
x1, y1 = subsample_or_initxy1
if isinstance(x1, torch.Tensor):
x1 = x1.cpu().numpy()
if isinstance(y1, torch.Tensor):
y1 = y1.cpu().numpy()
max_iter = 1
xy1 = np.int32(np.unique(x1 + W1 * y1)) # make sure there's no doublons
xy2 = np.full_like(xy1, -1)
old_xy1 = xy1.copy()
old_xy2 = xy2.copy()
if (
"dist" in matcher_kw
or "block_size" in matcher_kw
or (isinstance(device, str) and device.startswith("cuda"))
or (isinstance(device, torch.device) and device.type.startswith("cuda"))
):
pts1 = pts1.to(device)
pts2 = pts2.to(device)
tree1 = cdistMatcher(pts1, device=device)
tree2 = cdistMatcher(pts2, device=device)
else:
pts1, pts2 = to_numpy((pts1, pts2))
tree1 = KDTree(pts1)
tree2 = KDTree(pts2)
notyet = np.ones(len(xy1), dtype=bool)
basin = np.full((H1 * W1 + 1,), -1, dtype=np.int32) if ret_basin else None
niter = 0
# n_notyet = [len(notyet)]
while notyet.any():
_, xy2[notyet] = to_numpy(tree2.query(pts1[xy1[notyet]], **matcher_kw))
if not ret_basin:
notyet &= old_xy2 != xy2 # remove points that have converged
_, xy1[notyet] = to_numpy(tree1.query(pts2[xy2[notyet]], **matcher_kw))
if ret_basin:
basin[old_xy1[notyet]] = xy1[notyet]
notyet &= old_xy1 != xy1 # remove points that have converged
# n_notyet.append(notyet.sum())
niter += 1
if niter >= max_iter:
break
old_xy2[:] = xy2
old_xy1[:] = xy1
# print('notyet_stats:', ' '.join(map(str, (n_notyet+[0]*10)[:max_iter])))
if pixel_tol > 0:
# in case we only want to match some specific points
# and still have some way of checking reciprocity
old_yx1 = np.unravel_index(old_xy1, (H1, W1))[0].base
new_yx1 = np.unravel_index(xy1, (H1, W1))[0].base
dis = np.linalg.norm(old_yx1 - new_yx1, axis=-1)
converged = dis < pixel_tol
if not isinstance(subsample_or_initxy1, int):
xy1 = old_xy1 # replace new points by old ones
else:
converged = ~notyet # converged correspondences
# keep only unique correspondences, and sort on xy1
xy1, xy2 = merge_corres(
xy1[converged], xy2[converged], (H1, W1), (H2, W2), ret_xy=ret_xy
)
if max_matches is not None and len(xy1) > max_matches:
if isinstance(pts1, torch.Tensor):
# Convert to tensors and compute linear indices
xy1_tensor = torch.from_numpy(xy1.copy()).to(device)
xy2_tensor = torch.from_numpy(xy2.copy()).to(device)
# Convert (x,y) coordinates to linear indices
xy1_linear = xy1_tensor[:, 1] * W1 + xy1_tensor[:, 0] # y * width + x
xy2_linear = xy2_tensor[:, 1] * W2 + xy2_tensor[:, 0]
# Get descriptor vectors
matched_desc1 = pts1[xy1_linear]
matched_desc2 = pts2[xy2_linear]
# Compute similarity scores
scores = (matched_desc1 * matched_desc2).sum(dim=1)
# Select top-k matches
_, topk_indices = torch.topk(
scores,
k=min(max_matches, len(scores)),
sorted=True
)
# Apply selection to tensor indices and convert back to numpy
xy1_tensor = xy1_tensor[topk_indices]
xy2_tensor = xy2_tensor[topk_indices]
xy1 = xy1_tensor.cpu().numpy().copy()
xy2 = xy2_tensor.cpu().numpy().copy()
else:
raise Exception('Pointclouds must be tensors')
# # CPU version with explicit copies
# # Convert (x,y) to linear indices
# xy1_linear = xy1[:, 1] * W1 + xy1[:, 0]
# xy2_linear = xy2[:, 1] * W2 + xy2[:, 0]
# matched_desc1 = pts1[xy1_linear].copy()
# matched_desc2 = pts2[xy2_linear].copy()
# print("matched_desc1", matched_desc1.shape)
# print("matched_desc2", matched_desc2.shape)
# scores = np.einsum("ij,ij->i", matched_desc1, matched_desc2)
# # Get and sort top-k indices
# topk_indices = np.argpartition(-scores, max_matches)[:max_matches]
# topk_indices = topk_indices[np.argsort(-scores[topk_indices])]
# # Apply selection with copy
# xy1 = xy1[topk_indices].copy()
# xy2 = xy2[topk_indices].copy()
elif max_matches is not None: # Handle case where len <= max_matches
# Truncate with copy to ensure positive strides
xy1 = xy1[:max_matches].copy() if isinstance(xy1, np.ndarray) else xy1[:max_matches]
xy2 = xy2[:max_matches].copy() if isinstance(xy2, np.ndarray) else xy2[:max_matches]
if ret_basin:
return xy1, xy2, basin.cpu()
return xy1, xy2
def extract_correspondences_nonsym(
A, B, confA, confB, subsample=8, device=None, ptmap_key="pred_desc", pixel_tol=0
):
if "3d" in ptmap_key:
opt = dict(device="cpu", workers=32)
else:
opt = dict(device=device, dist="dot", block_size=2**13)
# matching the two pairs
idx1 = []
idx2 = []
# merge corres from opposite pairs
HA, WA = A.shape[:2]
HB, WB = B.shape[:2]
if pixel_tol == 0:
nn1to2 = fast_reciprocal_NNs(
A, B, subsample_or_initxy1=subsample, ret_xy=False, **opt
)
nn2to1 = fast_reciprocal_NNs(
B, A, subsample_or_initxy1=subsample, ret_xy=False, **opt
)
else:
S = subsample
yA, xA = np.mgrid[S // 2 : HA : S, S // 2 : WA : S].reshape(2, -1)
yB, xB = np.mgrid[S // 2 : HB : S, S // 2 : WB : S].reshape(2, -1)
nn1to2 = fast_reciprocal_NNs(
A,
B,
subsample_or_initxy1=(xA, yA),
ret_xy=False,
pixel_tol=pixel_tol,
**opt,
)
nn2to1 = fast_reciprocal_NNs(
B,
A,
subsample_or_initxy1=(xB, yB),
ret_xy=False,
pixel_tol=pixel_tol,
**opt,
)
idx1 = np.r_[nn1to2[0], nn2to1[1]]
idx2 = np.r_[nn1to2[1], nn2to1[0]]
c1 = confA.ravel()[idx1]
c2 = confB.ravel()[idx2]
xy1, xy2, idx = merge_corres(
idx1, idx2, (HA, WA), (HB, WB), ret_xy=True, ret_index=True
)
conf = np.minimum(c1[idx], c2[idx])
corres = (xy1.copy(), xy2.copy(), conf)
return todevice(corres, device)
|