Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| from PIL import Image | |
| import torch | |
| from transformers import ViTForImageClassification, ViTImageProcessor | |
| from datasets import load_dataset | |
| # Model and processor configuration | |
| model_name_or_path = "google/vit-base-patch16-224-in21k" | |
| processor = ViTImageProcessor.from_pretrained(model_name_or_path) | |
| # Load dataset (adjust dataset_path accordingly) | |
| dataset_path = "pawlo2013/chest_xray" | |
| train_dataset = load_dataset(dataset_path, split="train") | |
| class_names = train_dataset.features["label"].names | |
| # Load ViT model | |
| model = ViTForImageClassification.from_pretrained( | |
| "./models", | |
| num_labels=len(class_names), | |
| id2label={str(i): label for i, label in enumerate(class_names)}, | |
| label2id={label: i for i, label in enumerate(class_names)}, | |
| ) | |
| # Set model to evaluation mode | |
| model.eval() | |
| # Define the classification function | |
| def classify_image(img_path): | |
| img = Image.open(img_path) | |
| processed_input = processor(images=img, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**processed_input) | |
| logits = outputs.logits | |
| probabilities = torch.softmax(logits, dim=1)[0].tolist() | |
| result = {class_name: prob for class_name, prob in zip(class_names, probabilities)} | |
| filename = os.path.basename(img_path).split(".")[0] | |
| return {"filename": filename, "probabilities": result} | |
| def format_output(output): | |
| return f"{output['filename']}", output["probabilities"] | |
| # Function to load examples from a folder | |
| def load_examples_from_folder(folder_path): | |
| examples = [] | |
| for file in os.listdir(folder_path): | |
| if file.endswith((".png", ".jpg", ".jpeg")): | |
| examples.append(os.path.join(folder_path, file)) | |
| return examples | |
| # Define the path to the examples folder | |
| examples_folder = "./examples" | |
| examples = load_examples_from_folder(examples_folder) | |
| # Create the Gradio interface | |
| iface = gr.Interface( | |
| fn=lambda img: format_output(classify_image(img)), | |
| inputs=gr.Image(type="filepath"), | |
| outputs=[gr.Textbox(label="True Label (from filename)"), gr.Label()], | |
| examples=examples, | |
| title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation", | |
| description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details [here](https://huggingface.co/pawlo2013/vit-pneumonia-x-ray_3_class). The examples presented are take from the test set of [Kermany et al. (2018) dataset.](https://data.mendeley.com/datasets/rscbjbr9sj/2)", | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| iface.launch() | |