PEFT-method-comparison / MetaMathQA /results /oft--llama-3.2-3B-rank32.json
github-actions[bot]
🚀 Deploy method comparison app from GH action
5f8ef4c
{
"run_info": {
"created_at": "2025-10-23T17:34:45+00:00",
"total_time": 2374.6856670790003,
"experiment_name": "oft/llama-3.2-3B-rank32",
"peft_branch": "main",
"train_config": {
"model_id": "meta-llama/Llama-3.2-3B",
"dtype": "bfloat16",
"max_seq_length": 768,
"batch_size": 4,
"batch_size_eval": 50,
"max_steps": 5000,
"eval_steps": 250,
"compile": false,
"query_template": "Question: {query} Think step by step.\nAnswer:",
"seed": 0,
"grad_norm_clip": 1.0,
"optimizer_type": "AdamW",
"optimizer_kwargs": {
"lr": 0.0001,
"weight_decay": 0.1
},
"lr_scheduler": "cosine",
"use_amp": false,
"autocast_adapter_dtype": true,
"generation_kwargs": {
"max_length": 800,
"max_new_tokens": 300
},
"attn_implementation": null
},
"peft_config": {
"task_type": null,
"peft_type": "OFT",
"auto_mapping": null,
"peft_version": "0.17.2.dev0@UNKNOWN",
"base_model_name_or_path": "meta-llama/Llama-3.2-3B",
"revision": null,
"inference_mode": false,
"r": 32,
"oft_block_size": 0,
"module_dropout": 0.0,
"target_modules": [
"v_proj",
"q_proj"
],
"fan_in_fan_out": false,
"bias": "none",
"exclude_modules": null,
"init_weights": true,
"layers_to_transform": null,
"layers_pattern": null,
"modules_to_save": null,
"coft": false,
"eps": 6e-05,
"block_share": false,
"use_cayley_neumann": true,
"num_cayley_neumann_terms": 5
},
"error_msg": ""
},
"train_info": {
"accelerator_memory_reserved_avg": 12097176784,
"accelerator_memory_max": 22328377344,
"accelerator_memory_reserved_99th": 17958185205,
"train_time": 2166.5656557240145,
"file_size": 32693568,
"num_trainable_params": 8171520,
"num_total_params": 3220921344,
"status": "success",
"metrics": [
{
"step": 250,
"valid accuracy": 0.36,
"train loss": 0.9631274998188019,
"train samples": 1000,
"train time": 40.319602065053914,
"eval time": 14.108862943998247,
"tokens / sec": 5251.019086408657,
"mem allocated avg": 6909552105.472,
"mem reserved avg": 12148658929.664,
"elapsed time": 117.40419055000166
},
{
"step": 500,
"valid accuracy": 0.3,
"train loss": 0.7145850785970688,
"train samples": 2000,
"train time": 39.82235778199902,
"eval time": 8.958179848999862,
"tokens / sec": 5223.07094769814,
"mem allocated avg": 6901974622.208,
"mem reserved avg": 12035630825.472,
"elapsed time": 217.32610749300147
},
{
"step": 750,
"valid accuracy": 0.46,
"train loss": 0.6711596403121948,
"train samples": 3000,
"train time": 40.14594141800262,
"eval time": 8.506328391002171,
"tokens / sec": 5340.539851031025,
"mem allocated avg": 6912328740.864,
"mem reserved avg": 12194418786.304,
"elapsed time": 317.6191419630013
},
{
"step": 1000,
"valid accuracy": 0.48,
"train loss": 0.651293668627739,
"train samples": 4000,
"train time": 39.88486097396162,
"eval time": 9.90862209899933,
"tokens / sec": 5223.435531993199,
"mem allocated avg": 6903443197.952,
"mem reserved avg": 12063405506.56,
"elapsed time": 418.50864810500207
},
{
"step": 1250,
"valid accuracy": 0.36,
"train loss": 0.6456290460824966,
"train samples": 5000,
"train time": 39.799740495029255,
"eval time": 10.214905517997977,
"tokens / sec": 5239.682405116313,
"mem allocated avg": 6904099018.752,
"mem reserved avg": 12058431062.016,
"elapsed time": 519.874058526002
},
{
"step": 1500,
"valid accuracy": 0.44,
"train loss": 0.6369200776815415,
"train samples": 6000,
"train time": 39.7944654230123,
"eval time": 9.540699907996895,
"tokens / sec": 5260.304360790541,
"mem allocated avg": 6905092661.248,
"mem reserved avg": 12085794701.312,
"elapsed time": 620.4396147330008
},
{
"step": 1750,
"valid accuracy": 0.46,
"train loss": 0.6281714961528778,
"train samples": 7000,
"train time": 39.897877080999024,
"eval time": 10.18648028700045,
"tokens / sec": 5247.271667486872,
"mem allocated avg": 6906448510.976,
"mem reserved avg": 12100340547.584,
"elapsed time": 721.9082820210024
},
{
"step": 2000,
"valid accuracy": 0.42,
"train loss": 0.6302315661907196,
"train samples": 8000,
"train time": 39.71084841699121,
"eval time": 14.071537550997164,
"tokens / sec": 5230.20807359866,
"mem allocated avg": 6903141050.368,
"mem reserved avg": 12043474173.952,
"elapsed time": 826.8578335800012
},
{
"step": 2250,
"valid accuracy": 0.44,
"train loss": 0.6209213199615479,
"train samples": 9000,
"train time": 40.21075651299543,
"eval time": 14.178777003002324,
"tokens / sec": 5345.534842910316,
"mem allocated avg": 6914497898.496,
"mem reserved avg": 12228820467.712,
"elapsed time": 933.0094860480021
},
{
"step": 2500,
"valid accuracy": 0.44,
"train loss": 0.618088245511055,
"train samples": 10000,
"train time": 39.52404374004254,
"eval time": 14.292836533997615,
"tokens / sec": 5211.182371790845,
"mem allocated avg": 6899276843.008,
"mem reserved avg": 11993117360.128,
"elapsed time": 1037.8300729750008
},
{
"step": 2750,
"valid accuracy": 0.5,
"train loss": 0.6095741709470749,
"train samples": 11000,
"train time": 40.033341915019264,
"eval time": 8.408460123999248,
"tokens / sec": 5292.613353383542,
"mem allocated avg": 6909805750.272,
"mem reserved avg": 12163313827.84,
"elapsed time": 1137.8264588340026
},
{
"step": 3000,
"valid accuracy": 0.38,
"train loss": 0.6007885160446167,
"train samples": 12000,
"train time": 39.80941545598034,
"eval time": 9.015956413000822,
"tokens / sec": 5243.257094061238,
"mem allocated avg": 6905287532.544,
"mem reserved avg": 12079830401.024,
"elapsed time": 1237.902389021001
},
{
"step": 3250,
"valid accuracy": 0.56,
"train loss": 0.609751238822937,
"train samples": 13000,
"train time": 40.0327758529711,
"eval time": 9.789832267997554,
"tokens / sec": 5268.208249524811,
"mem allocated avg": 6907088541.696,
"mem reserved avg": 12110599815.168,
"elapsed time": 1339.3388089530017
},
{
"step": 3500,
"valid accuracy": 0.52,
"train loss": 0.5943620399236679,
"train samples": 14000,
"train time": 39.922039763983776,
"eval time": 8.802732422998815,
"tokens / sec": 5253.990057622979,
"mem allocated avg": 6905655146.496,
"mem reserved avg": 12095215108.096,
"elapsed time": 1439.3830861440001
},
{
"step": 3750,
"valid accuracy": 0.48,
"train loss": 0.5927145059108734,
"train samples": 15000,
"train time": 40.492691420033225,
"eval time": 9.00371527400057,
"tokens / sec": 5351.65711145565,
"mem allocated avg": 6916861732.864,
"mem reserved avg": 12265587736.576,
"elapsed time": 1540.9954331820009
},
{
"step": 4000,
"valid accuracy": 0.5,
"train loss": 0.6037785897254944,
"train samples": 16000,
"train time": 39.58210096696348,
"eval time": 9.008053338999161,
"tokens / sec": 5163.268118854439,
"mem allocated avg": 6898274762.752,
"mem reserved avg": 11974511427.584,
"elapsed time": 1640.5221296710006
},
{
"step": 4250,
"valid accuracy": 0.5,
"train loss": 0.5905539064407349,
"train samples": 17000,
"train time": 40.03998009499628,
"eval time": 10.12545333899834,
"tokens / sec": 5279.448179006884,
"mem allocated avg": 6908281157.632,
"mem reserved avg": 12122973011.968,
"elapsed time": 1742.3377487470025
},
{
"step": 4500,
"valid accuracy": 0.56,
"train loss": 0.5975803916454315,
"train samples": 18000,
"train time": 39.89842279496588,
"eval time": 8.936802754000382,
"tokens / sec": 5208.677071471134,
"mem allocated avg": 6903550846.976,
"mem reserved avg": 12046091419.648,
"elapsed time": 1842.5112857700005
},
{
"step": 4750,
"valid accuracy": 0.56,
"train loss": 0.5887055099010468,
"train samples": 19000,
"train time": 39.961028160010756,
"eval time": 9.079531961000612,
"tokens / sec": 5253.59355518503,
"mem allocated avg": 6905698629.632,
"mem reserved avg": 12090920140.8,
"elapsed time": 1943.151558054
},
{
"step": 5000,
"valid accuracy": 0.56,
"train loss": 0.5947723392248153,
"train samples": 20000,
"train time": 39.70571685399773,
"eval time": 8.965388607000932,
"tokens / sec": 5245.592234636347,
"mem allocated avg": 6902749710.336,
"mem reserved avg": 12042400432.128,
"elapsed time": 2043.0771329560012
},
{
"step": 5000,
"test accuracy": 0.4935557240333586,
"train loss": 0.5947723392248153,
"train samples": 20000,
"train total tokens": 4198051
}
]
},
"meta_info": {
"model_info": {
"sha": "13afe5124825b4f3751f836b40dafda64c1ed062",
"created_at": "2024-09-18T15:23:48+00:00"
},
"dataset_info": {
"metamath": {
"sha": "aa4f34d3d2d3231299b5b03d9b3e5a20da45aa18",
"created_at": "2023-09-21T17:22:46+00:00"
},
"gsm8k": {
"sha": "e53f048856ff4f594e959d75785d2c2d37b678ee",
"created_at": "2022-04-12T10:22:10+00:00"
}
},
"package_info": {
"transformers-version": "4.57.1",
"transformers-commit-hash": null,
"peft-version": "0.17.2.dev0",
"peft-commit-hash": "a18ba67f242ab2eb74cdabab76ea2fd836b5cd83",
"datasets-version": "4.2.0",
"datasets-commit-hash": null,
"bitsandbytes-version": "0.46.0",
"bitsandbytes-commit-hash": null,
"torch-version": "2.9.0+cu128",
"torch-commit-hash": null
},
"system_info": {
"system": "Linux",
"release": "6.14.0-1014-aws",
"version": "#14~24.04.1-Ubuntu SMP Tue Sep 23 14:51:14 UTC 2025",
"machine": "x86_64",
"processor": "x86_64",
"accelerator": "NVIDIA L40S"
},
"pytorch_info": "PyTorch built with:\n - GCC 13.3\n - C++ Version: 201703\n - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 12.8\n - NVCC architecture flags: -gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_100,code=sm_100;-gencode;arch=compute_120,code=sm_120\n - CuDNN 90.7.1\n - Built with CuDNN 90.8\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=0fabc3ba44823f257e70ce397d989c8de5e362c1, CUDA_VERSION=12.8, CUDNN_VERSION=9.8.0, CXX_COMPILER=/opt/rh/gcc-toolset-13/root/usr/bin/c++, CXX_FLAGS= -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -DC10_NODEPRECATED -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -faligned-new -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-dangling-reference -Wno-error=dangling-reference -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.9.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, USE_XCCL=OFF, USE_XPU=OFF, \n"
}
}