PEFT-method-comparison / MetaMathQA /results /prompt_tuning--llama-3.2-3B-default.json
github-actions[bot]
🚀 Deploy method comparison app from GH action
08d2048
{
"run_info": {
"created_at": "2025-06-20T08:46:44+00:00",
"total_time": 2700.1305744579877,
"experiment_name": "prompt_tuning/llama-3.2-3B-default",
"peft_branch": "main",
"train_config": {
"model_id": "meta-llama/Llama-3.2-3B",
"dtype": "bfloat16",
"max_seq_length": 768,
"batch_size": 4,
"batch_size_eval": 50,
"max_steps": 5000,
"eval_steps": 250,
"compile": false,
"query_template": "Question: {query} Think step by step.\nAnswer:",
"seed": 0,
"grad_norm_clip": 1.0,
"optimizer_type": "AdamW",
"optimizer_kwargs": {
"lr": 0.0001,
"weight_decay": 0.1
},
"lr_scheduler": "cosine",
"use_amp": false,
"autocast_adapter_dtype": true,
"generation_kwargs": {
"max_length": 800,
"max_new_tokens": 300
},
"attn_implementation": null
},
"peft_config": {
"task_type": "CAUSAL_LM",
"peft_type": "PROMPT_TUNING",
"auto_mapping": null,
"base_model_name_or_path": "meta-llama/Llama-3.2-3B",
"revision": null,
"inference_mode": false,
"num_virtual_tokens": 200,
"token_dim": 3072,
"num_transformer_submodules": 1,
"num_attention_heads": 24,
"num_layers": 28,
"prompt_tuning_init": "RANDOM",
"prompt_tuning_init_text": null,
"tokenizer_name_or_path": null,
"tokenizer_kwargs": null
},
"error_msg": ""
},
"train_info": {
"accelerator_memory_reserved_avg": 15297773830,
"accelerator_memory_max": 24379392000,
"accelerator_memory_reserved_99th": 20669781770,
"train_time": 2379.557773831024,
"file_size": 2457728,
"num_trainable_params": 614400,
"num_total_params": 3213364224,
"status": "success",
"metrics": [
{
"step": 250,
"valid accuracy": 0.0,
"train loss": 3.462425223350525,
"train samples": 1000,
"train time": 46.206722402057494,
"eval time": 15.901069569998072,
"tokens / sec": 4581.9956273412845,
"mem allocated avg": 7082871494.656,
"mem reserved avg": 15331489742.848,
"elapsed time": 119.40567356300016
},
{
"step": 500,
"valid accuracy": 0.0,
"train loss": 2.259350722312927,
"train samples": 2000,
"train time": 45.66361523300293,
"eval time": 15.856271529002697,
"tokens / sec": 4554.939396249854,
"mem allocated avg": 7075523266.56,
"mem reserved avg": 15240674672.64,
"elapsed time": 232.12755202699918
},
{
"step": 750,
"valid accuracy": 0.0,
"train loss": 1.758247773170471,
"train samples": 3000,
"train time": 46.58154148896574,
"eval time": 15.854417883005226,
"tokens / sec": 4602.70298377282,
"mem allocated avg": 7085465481.216,
"mem reserved avg": 15376771448.832,
"elapsed time": 346.0752758900053
},
{
"step": 1000,
"valid accuracy": 0.0,
"train loss": 1.6028480381965637,
"train samples": 4000,
"train time": 45.41573346107907,
"eval time": 15.861826895998092,
"tokens / sec": 4587.30893729906,
"mem allocated avg": 7077486481.408,
"mem reserved avg": 15288170971.136,
"elapsed time": 458.6240012299968
},
{
"step": 1250,
"valid accuracy": 0.0,
"train loss": 1.5049157681465148,
"train samples": 5000,
"train time": 46.04039786210342,
"eval time": 15.877354786993237,
"tokens / sec": 4529.456948321703,
"mem allocated avg": 7076584331.264,
"mem reserved avg": 15265983102.976,
"elapsed time": 571.9228152269934
},
{
"step": 1500,
"valid accuracy": 0.0,
"train loss": 1.4375499501228333,
"train samples": 6000,
"train time": 45.70124057796784,
"eval time": 15.84707298700232,
"tokens / sec": 4580.4227052190045,
"mem allocated avg": 7078481408.0,
"mem reserved avg": 15279463596.032,
"elapsed time": 684.8850296739984
},
{
"step": 1750,
"valid accuracy": 0.0,
"train loss": 1.3827230257987977,
"train samples": 7000,
"train time": 44.976750778907444,
"eval time": 15.845691901995451,
"tokens / sec": 4654.7382008346485,
"mem allocated avg": 7079360505.856,
"mem reserved avg": 15298052751.36,
"elapsed time": 796.8428356289951
},
{
"step": 2000,
"valid accuracy": 0.0,
"train loss": 1.3338124525547028,
"train samples": 8000,
"train time": 45.10262611102371,
"eval time": 15.857041016992298,
"tokens / sec": 4604.964675199615,
"mem allocated avg": 7075931449.344,
"mem reserved avg": 15257242173.44,
"elapsed time": 908.9726742479979
},
{
"step": 2250,
"valid accuracy": 0.0,
"train loss": 1.2829065501689911,
"train samples": 9000,
"train time": 46.84363810600189,
"eval time": 15.872781344005489,
"tokens / sec": 4588.627371631486,
"mem allocated avg": 7087554078.72,
"mem reserved avg": 15416986435.584,
"elapsed time": 1023.331907868007
},
{
"step": 2500,
"valid accuracy": 0.0,
"train loss": 1.2462495183944702,
"train samples": 10000,
"train time": 45.55510413390584,
"eval time": 15.84976143699896,
"tokens / sec": 4521.271631705095,
"mem allocated avg": 7072915062.784,
"mem reserved avg": 15202909159.424,
"elapsed time": 1136.1328145180014
},
{
"step": 2750,
"valid accuracy": 0.0,
"train loss": 1.2045790712833404,
"train samples": 11000,
"train time": 45.34144312601711,
"eval time": 15.8525270359969,
"tokens / sec": 4673.009621928461,
"mem allocated avg": 7083153442.816,
"mem reserved avg": 15344005545.984,
"elapsed time": 1248.7101804669946
},
{
"step": 3000,
"valid accuracy": 0.0,
"train loss": 1.1678078708648683,
"train samples": 12000,
"train time": 45.599694666831056,
"eval time": 15.870247816987103,
"tokens / sec": 4577.464860786221,
"mem allocated avg": 7077996111.872,
"mem reserved avg": 15283892781.056,
"elapsed time": 1361.5449211609957
},
{
"step": 3250,
"valid accuracy": 0.04,
"train loss": 1.1313301923274994,
"train samples": 13000,
"train time": 45.95094640579191,
"eval time": 15.868188906999421,
"tokens / sec": 4589.698722144641,
"mem allocated avg": 7079686449.152,
"mem reserved avg": 15301248811.008,
"elapsed time": 1474.734694629995
},
{
"step": 3500,
"valid accuracy": 0.06,
"train loss": 1.1092858843803406,
"train samples": 14000,
"train time": 45.96525488591578,
"eval time": 15.86030059499899,
"tokens / sec": 4563.229346178814,
"mem allocated avg": 7078805225.472,
"mem reserved avg": 15302347718.656,
"elapsed time": 1588.1363447299955
},
{
"step": 3750,
"valid accuracy": 0.06,
"train loss": 1.079538120508194,
"train samples": 15000,
"train time": 46.46510764303093,
"eval time": 15.86466599200503,
"tokens / sec": 4663.779145091515,
"mem allocated avg": 7089610215.424,
"mem reserved avg": 15446287843.328,
"elapsed time": 1702.2553167559963
},
{
"step": 4000,
"valid accuracy": 0.04,
"train loss": 1.0899075508117675,
"train samples": 16000,
"train time": 45.08557640206709,
"eval time": 15.860410296008922,
"tokens / sec": 4533.001822521445,
"mem allocated avg": 7071494891.52,
"mem reserved avg": 15189319614.464,
"elapsed time": 1814.3939928110049
},
{
"step": 4250,
"valid accuracy": 0.04,
"train loss": 1.0607522547245025,
"train samples": 17000,
"train time": 46.2303190480452,
"eval time": 15.875090683999588,
"tokens / sec": 4572.518735601033,
"mem allocated avg": 7082239875.072,
"mem reserved avg": 15329283538.944,
"elapsed time": 1928.1608909490024
},
{
"step": 4500,
"valid accuracy": 0.04,
"train loss": 1.068591582775116,
"train samples": 18000,
"train time": 45.96484722109744,
"eval time": 15.854171614992083,
"tokens / sec": 4521.237697155087,
"mem allocated avg": 7076175783.936,
"mem reserved avg": 15251420479.488,
"elapsed time": 2041.5032397750037
},
{
"step": 4750,
"valid accuracy": 0.06,
"train loss": 1.0587167317867279,
"train samples": 19000,
"train time": 45.48911916205543,
"eval time": 15.858397545001935,
"tokens / sec": 4615.147619194169,
"mem allocated avg": 7079419088.896,
"mem reserved avg": 15298539290.624,
"elapsed time": 2154.3035376479966
},
{
"step": 5000,
"valid accuracy": 0.02,
"train loss": 1.0654937489032745,
"train samples": 20000,
"train time": 45.758550852071494,
"eval time": 15.85034008299408,
"tokens / sec": 4551.7175723796145,
"mem allocated avg": 7075618770.944,
"mem reserved avg": 15251386925.056,
"elapsed time": 2267.4055672899995
},
{
"step": 5000,
"test accuracy": 0.050037907505686124,
"train loss": 1.0654937489032745,
"train samples": 20000,
"train total tokens": 4198051
}
]
},
"meta_info": {
"model_info": {
"sha": "13afe5124825b4f3751f836b40dafda64c1ed062",
"created_at": "2024-09-18T15:23:48+00:00"
},
"dataset_info": {
"metamath": {
"sha": "aa4f34d3d2d3231299b5b03d9b3e5a20da45aa18",
"created_at": "2023-09-21T17:22:46+00:00"
},
"gsm8k": {
"sha": "e53f048856ff4f594e959d75785d2c2d37b678ee",
"created_at": "2022-04-12T10:22:10+00:00"
}
},
"package_info": {
"transformers-version": "4.52.4",
"transformers-commit-hash": null,
"peft-version": "0.15.2.dev0",
"peft-commit-hash": "5fe7f8f8abe914d313fc3751f2ea92de7718fbaf",
"datasets-version": "3.6.0",
"datasets-commit-hash": null,
"bitsandbytes-version": "0.46.0",
"bitsandbytes-commit-hash": null,
"torch-version": "2.7.1+cu126",
"torch-commit-hash": null
},
"system_info": {
"system": "Linux",
"release": "6.8.0-1029-aws",
"version": "#31-Ubuntu SMP Wed Apr 23 18:42:41 UTC 2025",
"machine": "x86_64",
"processor": "x86_64",
"accelerator": "NVIDIA L40S"
},
"pytorch_info": "PyTorch built with:\n - GCC 11.2\n - C++ Version: 201703\n - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 12.6\n - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90\n - CuDNN 90.7.1 (built against CUDA 12.8)\n - Built with CuDNN 90.5.1\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=e2d141dbde55c2a4370fac5165b0561b6af4798b, CUDA_VERSION=12.6, CUDNN_VERSION=9.5.1, CXX_COMPILER=/opt/rh/gcc-toolset-11/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.7.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, \n"
}
}