Spaces:
Sleeping
Sleeping
add permutation
Browse files- pages/ALE.py +1 -0
- pages/PermutationFeatureImportance.py +1 -2
- src/prompt_config.py +12 -0
pages/ALE.py
CHANGED
@@ -66,6 +66,7 @@ def main():
|
|
66 |
|
67 |
st.title("ALE (Accumulated Local Effects)")
|
68 |
st.write(prompt_params.ALE_INTRODUCTION)
|
|
|
69 |
# Explain the selected sample
|
70 |
if st.button("Explain Sample"):
|
71 |
explain_example()
|
|
|
66 |
|
67 |
st.title("ALE (Accumulated Local Effects)")
|
68 |
st.write(prompt_params.ALE_INTRODUCTION)
|
69 |
+
st.write("now has bug, waiting for fix")
|
70 |
# Explain the selected sample
|
71 |
if st.button("Explain Sample"):
|
72 |
explain_example()
|
pages/PermutationFeatureImportance.py
CHANGED
@@ -50,7 +50,6 @@ def explain_example():
|
|
50 |
st.pyplot(fig)
|
51 |
|
52 |
fig, ax = plt.subplots(figsize=(10, 5))
|
53 |
-
st.write("2D Second-Order ALE Plot")
|
54 |
ax.boxplot(perm_imp.importances[sorted_idx].T,
|
55 |
vert=False, labels=X_test.columns[sorted_idx])
|
56 |
ax.set_title("Permutation Importances")
|
@@ -65,7 +64,7 @@ def main():
|
|
65 |
train_model()
|
66 |
|
67 |
st.title("ALE (Accumulated Local Effects)")
|
68 |
-
st.write(prompt_params.
|
69 |
# Explain the selected sample
|
70 |
if st.button("Explain Sample"):
|
71 |
explain_example()
|
|
|
50 |
st.pyplot(fig)
|
51 |
|
52 |
fig, ax = plt.subplots(figsize=(10, 5))
|
|
|
53 |
ax.boxplot(perm_imp.importances[sorted_idx].T,
|
54 |
vert=False, labels=X_test.columns[sorted_idx])
|
55 |
ax.set_title("Permutation Importances")
|
|
|
64 |
train_model()
|
65 |
|
66 |
st.title("ALE (Accumulated Local Effects)")
|
67 |
+
st.write(prompt_params.PERMUTTATION_INTRODUCTION)
|
68 |
# Explain the selected sample
|
69 |
if st.button("Explain Sample"):
|
70 |
explain_example()
|
src/prompt_config.py
CHANGED
@@ -118,3 +118,15 @@ The process of ALE includes the following steps:
|
|
118 |
|
119 |
By using ALE, **interpretability** improves by capturing localized effects while mitigating bias from correlated features, making model explanations more reliable.
|
120 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
By using ALE, **interpretability** improves by capturing localized effects while mitigating bias from correlated features, making model explanations more reliable.
|
120 |
"""
|
121 |
+
PERMUTATION_INTRODUCTION = """
|
122 |
+
Permutation Feature Importance is an interpretable machine learning technique that evaluates feature importance by measuring the impact of shuffling a feature’s values on model error.
|
123 |
+
|
124 |
+
The process of Permutation Feature Importance includes the following steps:
|
125 |
+
1. **Compute Initial Model Error**: Measure the model’s baseline performance using a metric like Mean Squared Error (MSE).
|
126 |
+
2. **Permute a Feature**: Randomly shuffle the values of a selected feature while keeping all other features unchanged.
|
127 |
+
3. **Compute New Model Error**: Re-evaluate the model on the dataset with the shuffled feature to obtain a new error score.
|
128 |
+
4. **Calculate Feature Importance**: Compute the difference between the new error and the original error. A larger difference indicates higher importance.
|
129 |
+
5. **Repeat for Stability**: Perform multiple repetitions of permutation and calculate the mean and standard deviation of feature importance scores for reliability.
|
130 |
+
|
131 |
+
By using Permutation Feature Importance, **interpretability** improves by providing a direct measure of a feature’s contribution to predictive performance, making model explanations more intuitive and robust.
|
132 |
+
"""
|