peggy30 commited on
Commit
927f088
·
1 Parent(s): 4e8aca7
Files changed (2) hide show
  1. pages/ICE_and_PDP.py +3 -3
  2. src/prompt_config.py +0 -2
pages/ICE_and_PDP.py CHANGED
@@ -53,9 +53,9 @@ def main():
53
 
54
 
55
  selected_feature = st.sidebar.selectbox("Select a feature for PDP/ICE analysis:", ("Age", "Workclass", "Education-Num", "Marital Status", "Occupation",
56
- "Relationship", "Race", "Sex", "Capital Gain", "Capital Loss", "Hours per week", "Country"))
57
- st.write(f"selected feature is {selected_feature}")
58
- kind = st.sidebar.selectbox("Select plot type:", ("average", "both", "individual"))
59
 
60
  st.title("ICE (Individual Conditional Expectation) and PDP (Partial Dependence Plot)")
61
  st.write(prompt_params.ICE_INTRODUCTION)
 
53
 
54
 
55
  selected_feature = st.sidebar.selectbox("Select a feature for PDP/ICE analysis:", ("Age", "Workclass", "Education-Num", "Marital Status", "Occupation",
56
+ "Relationship", "Race", "Sex", "Capital Gain", "Capital Loss", "Hours per week", "Country"),)
57
+ print(f"selected feature is {selected_feature}")
58
+ kind = st.sidebar.selectbox("Select plot type:", ("average", "both", "individual"),)
59
 
60
  st.title("ICE (Individual Conditional Expectation) and PDP (Partial Dependence Plot)")
61
  st.write(prompt_params.ICE_INTRODUCTION)
src/prompt_config.py CHANGED
@@ -1,6 +1,4 @@
1
  APP_INTRODUCTION = """
2
- # **Explanatory AI for Income Prediction - App Overview**
3
-
4
  This application provides an **Explainable AI (XAI)** framework to analyze a machine learning model trained on the **UCI Adult Income Dataset** ([link](https://archive.ics.uci.edu/dataset/2/adult)). The model predicts whether an individual earns more than **$50,000 per year** based on key demographic and employment-related features, including:
5
 
6
  - **Age**
 
1
  APP_INTRODUCTION = """
 
 
2
  This application provides an **Explainable AI (XAI)** framework to analyze a machine learning model trained on the **UCI Adult Income Dataset** ([link](https://archive.ics.uci.edu/dataset/2/adult)). The model predicts whether an individual earns more than **$50,000 per year** based on key demographic and employment-related features, including:
3
 
4
  - **Age**