Spaces:
Sleeping
Sleeping
add shap
Browse files- pages/Anchors.py +1 -1
- pages/LIME.py +0 -5
- pages/SHAP.py +106 -0
pages/Anchors.py
CHANGED
@@ -86,7 +86,7 @@ def explain_example(anchors_threshold, example_idx):
|
|
86 |
class_names,
|
87 |
feature_names,
|
88 |
X_train.values,
|
89 |
-
categorical_names)
|
90 |
|
91 |
# Explain the selected sample
|
92 |
exp = explainer.explain_instance(X_test.values[example_idx], global_model.predict, threshold=anchors_threshold)
|
|
|
86 |
class_names,
|
87 |
feature_names,
|
88 |
X_train.values,
|
89 |
+
categorical_names, seed=42)
|
90 |
|
91 |
# Explain the selected sample
|
92 |
exp = explainer.explain_instance(X_test.values[example_idx], global_model.predict, threshold=anchors_threshold)
|
pages/LIME.py
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
# Import Libraries
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
import streamlit as st
|
6 |
import src.prompt_config as prompt_params
|
7 |
import streamlit.components.v1 as components
|
@@ -12,8 +9,6 @@ from sklearn.model_selection import train_test_split
|
|
12 |
# XAI (Explainability)
|
13 |
import shap
|
14 |
import lime
|
15 |
-
# from anchor import anchor_tabular
|
16 |
-
from sklearn.inspection import PartialDependenceDisplay
|
17 |
|
18 |
# Global Variables to Store Model & Data
|
19 |
global_model = None
|
|
|
1 |
# Import Libraries
|
|
|
|
|
|
|
2 |
import streamlit as st
|
3 |
import src.prompt_config as prompt_params
|
4 |
import streamlit.components.v1 as components
|
|
|
9 |
# XAI (Explainability)
|
10 |
import shap
|
11 |
import lime
|
|
|
|
|
12 |
|
13 |
# Global Variables to Store Model & Data
|
14 |
global_model = None
|
pages/SHAP.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import Libraries
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import streamlit as st
|
4 |
+
import src.prompt_config as prompt_params
|
5 |
+
# Models
|
6 |
+
import xgboost
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
|
9 |
+
# XAI (Explainability)
|
10 |
+
import shap
|
11 |
+
|
12 |
+
# Global Variables to Store Model & Data
|
13 |
+
global_model = None
|
14 |
+
X_train, X_test, y_train, y_test = None, None, None, None
|
15 |
+
|
16 |
+
|
17 |
+
def train_model():
|
18 |
+
""" Train the XGBoost model only once and store it globally. """
|
19 |
+
global global_model, X_train, X_test, y_train, y_test
|
20 |
+
|
21 |
+
if global_model is None:
|
22 |
+
# Load Data from SHAP library
|
23 |
+
X, y = shap.datasets.adult()
|
24 |
+
|
25 |
+
# Split data
|
26 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
|
27 |
+
|
28 |
+
# Train XGBoost model
|
29 |
+
global_model = xgboost.XGBClassifier()
|
30 |
+
global_model.fit(X_train, y_train)
|
31 |
+
|
32 |
+
print("XGBoost Model training completed!")
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
def explain_example(kernel_width, example_idx):
|
37 |
+
""" Explain a given sample without retraining the model. """
|
38 |
+
global global_model, X_train, X_test, y_train, y_test
|
39 |
+
|
40 |
+
if global_model is None:
|
41 |
+
train_model()
|
42 |
+
|
43 |
+
X, y = shap.datasets.adult()
|
44 |
+
X100 = shap.utils.sample(X, 100)
|
45 |
+
explainer = shap.TreeExplainer(global_model, X100) # Use the TreeExplainer algorithm with background distribution
|
46 |
+
shap_values = explainer.shap_values(X_test) # Get shap values
|
47 |
+
shap_values_exp = explainer(X_test) # Get explainer for X_test
|
48 |
+
|
49 |
+
# SHAP Summary Plot (BeeSwarm)
|
50 |
+
st.write("### π SHAP Summary Plot")
|
51 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
52 |
+
shap.summary_plot(shap_values, X_test, show=False)
|
53 |
+
st.pyplot(fig)
|
54 |
+
|
55 |
+
# SHAP Summary Bar Plot
|
56 |
+
st.write("### π SHAP Feature Importance (Bar Plot)")
|
57 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
58 |
+
shap.summary_plot(shap_values, X_test, plot_type="bar", show=False)
|
59 |
+
st.pyplot(fig)
|
60 |
+
|
61 |
+
# SHAP Dependence Plot
|
62 |
+
st.write("### π SHAP Dependence Plot for 'Age'")
|
63 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
64 |
+
shap.dependence_plot('Age', shap_values, X_test, ax=ax, show=False)
|
65 |
+
st.pyplot(fig)
|
66 |
+
|
67 |
+
# SHAP Waterfall Plot
|
68 |
+
st.write(f"### π SHAP Waterfall Plot for Example {example_idx}")
|
69 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
70 |
+
shap.plots.waterfall(shap_values_exp[example_idx], show=False)
|
71 |
+
st.pyplot(fig)
|
72 |
+
|
73 |
+
|
74 |
+
def main():
|
75 |
+
global global_model
|
76 |
+
|
77 |
+
# Ensure the model is trained only once
|
78 |
+
if global_model is None:
|
79 |
+
train_model()
|
80 |
+
|
81 |
+
# Streamlit UI Controls
|
82 |
+
lime_kernel_width = st.sidebar.slider(
|
83 |
+
label="Set the `kernel` value:",
|
84 |
+
min_value=0.0,
|
85 |
+
max_value=100.0,
|
86 |
+
value=3.0, # Default value
|
87 |
+
step=0.1, # Step size
|
88 |
+
help=prompt_params.LIME_KERNEL_WIDTH_HELP,
|
89 |
+
)
|
90 |
+
|
91 |
+
example_idx = st.sidebar.number_input(
|
92 |
+
label="Select the sample index to explain:",
|
93 |
+
min_value=0,
|
94 |
+
max_value=len(X_test) - 1, # Ensures the index is within range
|
95 |
+
value=1, # Default value
|
96 |
+
step=1, # Step size
|
97 |
+
help=prompt_params.EXAMPLE_BE_EXPLAINED_IDX,
|
98 |
+
)
|
99 |
+
|
100 |
+
# Explain the selected sample
|
101 |
+
if st.button("Explain Sample"):
|
102 |
+
explain_example(lime_kernel_width, example_idx)
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
main()
|