Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,449 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from pydantic import BaseModel, field_validator
|
| 3 |
+
from typing import List, Optional, Dict, Any
|
| 4 |
+
import numpy as np
|
| 5 |
+
import random
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
# --- Pydantic Models (from original app) ---
|
| 9 |
+
# We keep these for data validation and structure, even without FastAPI
|
| 10 |
+
class BaselineRequest(BaseModel):
|
| 11 |
+
task: str # "classification", "regression", "generation", "chess_moves"
|
| 12 |
+
dataset_size: int
|
| 13 |
+
output_format: str # "categorical", "continuous", "sequence"
|
| 14 |
+
classes: Optional[List[str]] = None
|
| 15 |
+
num_classes: Optional[int] = None
|
| 16 |
+
sequence_length: Optional[int] = None
|
| 17 |
+
target_distribution: Optional[Dict[str, float]] = None
|
| 18 |
+
|
| 19 |
+
@field_validator('dataset_size')
|
| 20 |
+
def size_must_be_positive(cls, v):
|
| 21 |
+
if v <= 0:
|
| 22 |
+
raise ValueError('Dataset size must be positive')
|
| 23 |
+
return v
|
| 24 |
+
|
| 25 |
+
class BaselineResponse(BaseModel):
|
| 26 |
+
task: str
|
| 27 |
+
baseline_type: str
|
| 28 |
+
metrics: Dict[str, Any] # Changed to Any to accommodate range list
|
| 29 |
+
sample_predictions: List[Any]
|
| 30 |
+
reality_check: str
|
| 31 |
+
advice: str
|
| 32 |
+
|
| 33 |
+
# --- Core Logic Functions (from original app) ---
|
| 34 |
+
|
| 35 |
+
def generate_random_classification(request: BaselineRequest):
|
| 36 |
+
"""Generate random classification baseline"""
|
| 37 |
+
if request.classes:
|
| 38 |
+
num_classes = len(request.classes)
|
| 39 |
+
class_names = request.classes
|
| 40 |
+
else:
|
| 41 |
+
num_classes = request.num_classes or 2
|
| 42 |
+
class_names = [f"class_{i}" for i in range(num_classes)]
|
| 43 |
+
|
| 44 |
+
# Ensure num_classes is not zero
|
| 45 |
+
if num_classes == 0:
|
| 46 |
+
num_classes = 1
|
| 47 |
+
class_names = ["default_class"]
|
| 48 |
+
|
| 49 |
+
# Generate random predictions
|
| 50 |
+
if request.target_distribution:
|
| 51 |
+
# Use provided distribution
|
| 52 |
+
weights = [request.target_distribution.get(cls, 1/num_classes) for cls in class_names]
|
| 53 |
+
try:
|
| 54 |
+
predictions = random.choices(class_names, weights=weights, k=request.dataset_size)
|
| 55 |
+
except ValueError: # Handle all-zero weights
|
| 56 |
+
predictions = [random.choice(class_names) for _ in range(request.dataset_size)]
|
| 57 |
+
else:
|
| 58 |
+
# Uniform random
|
| 59 |
+
predictions = [random.choice(class_names) for _ in range(request.dataset_size)]
|
| 60 |
+
|
| 61 |
+
# Calculate expected accuracy for uniform random
|
| 62 |
+
expected_accuracy = 1 / num_classes
|
| 63 |
+
|
| 64 |
+
return {
|
| 65 |
+
"baseline_type": "uniform_random" if not request.target_distribution else "weighted_random",
|
| 66 |
+
"metrics": {
|
| 67 |
+
"expected_accuracy": round(expected_accuracy, 4),
|
| 68 |
+
"expected_f1": round(expected_accuracy, 4), # Simplified for uniform case
|
| 69 |
+
"num_classes": num_classes
|
| 70 |
+
},
|
| 71 |
+
"sample_predictions": predictions[:10],
|
| 72 |
+
"reality_check": f"Random guessing should get ~{expected_accuracy:.1%} accuracy. If your model doesn't beat this by a significant margin, it's probably garbage.",
|
| 73 |
+
"advice": "Train a simple baseline (logistic regression, random forest) before going neural. Save yourself the GPU bills."
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
def generate_random_regression(request: BaselineRequest):
|
| 77 |
+
"""Generate random regression baseline"""
|
| 78 |
+
# Generate random continuous values
|
| 79 |
+
predictions = np.random.normal(0, 1, request.dataset_size)
|
| 80 |
+
|
| 81 |
+
return {
|
| 82 |
+
"baseline_type": "gaussian_random",
|
| 83 |
+
"metrics": {
|
| 84 |
+
"mean": round(float(np.mean(predictions)), 4),
|
| 85 |
+
"std": round(float(np.std(predictions)), 4),
|
| 86 |
+
"range": [round(float(np.min(predictions)), 4), round(float(np.max(predictions)), 4)]
|
| 87 |
+
},
|
| 88 |
+
"sample_predictions": predictions[:10].tolist(),
|
| 89 |
+
"reality_check": "Random regression predictions have infinite MSE against any reasonable target. If your model's MSE isn't dramatically better, you're wasting compute.",
|
| 90 |
+
"advice": "Start with mean prediction baseline, then linear regression. Neural networks are overkill for most regression problems."
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
def generate_random_sequence(request: BaselineRequest):
|
| 94 |
+
"""Generate random sequence baseline (like text/chess moves)"""
|
| 95 |
+
vocab_size = len(request.classes) if request.classes else 1000
|
| 96 |
+
if vocab_size == 0: # Handle empty vocab
|
| 97 |
+
vocab_size = 1
|
| 98 |
+
|
| 99 |
+
seq_len = request.sequence_length or 50
|
| 100 |
+
|
| 101 |
+
sequences = []
|
| 102 |
+
for _ in range(min(10, request.dataset_size)):
|
| 103 |
+
if request.classes:
|
| 104 |
+
seq = [random.choice(request.classes) for _ in range(seq_len)]
|
| 105 |
+
else:
|
| 106 |
+
seq = [random.randint(0, vocab_size-1) for _ in range(seq_len)]
|
| 107 |
+
sequences.append(seq)
|
| 108 |
+
|
| 109 |
+
perplexity = vocab_size # Worst case perplexity for uniform random
|
| 110 |
+
|
| 111 |
+
return {
|
| 112 |
+
"baseline_type": "uniform_random_sequence",
|
| 113 |
+
"metrics": {
|
| 114 |
+
"perplexity": perplexity,
|
| 115 |
+
"sequence_length": seq_len,
|
| 116 |
+
"vocab_size": vocab_size
|
| 117 |
+
},
|
| 118 |
+
"sample_predictions": sequences,
|
| 119 |
+
"reality_check": f"Random sequences have perplexity ~{perplexity}. If your language model doesn't crush this, it learned nothing.",
|
| 120 |
+
"advice": "Even a bigram model should destroy random baselines. If it doesn't, check your data preprocessing."
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
# Special handlers (from original app)
|
| 124 |
+
TASK_HANDLERS = {
|
| 125 |
+
"chess_moves": lambda req: generate_random_sequence(BaselineRequest(
|
| 126 |
+
task="chess_moves",
|
| 127 |
+
dataset_size=req.dataset_size,
|
| 128 |
+
output_format="sequence",
|
| 129 |
+
classes=["e4", "d4", "Nf3", "c4", "g3", "Nc3", "f4", "e3"], # Common opening moves
|
| 130 |
+
sequence_length=1
|
| 131 |
+
)),
|
| 132 |
+
"sentiment": lambda req: generate_random_classification(BaselineRequest(
|
| 133 |
+
task="sentiment",
|
| 134 |
+
dataset_size=req.dataset_size,
|
| 135 |
+
output_format="categorical",
|
| 136 |
+
classes=["positive", "negative", "neutral"]
|
| 137 |
+
)),
|
| 138 |
+
"image_classification": lambda req: generate_random_classification(BaselineRequest(
|
| 139 |
+
task="image_classification",
|
| 140 |
+
dataset_size=req.dataset_size,
|
| 141 |
+
output_format="categorical",
|
| 142 |
+
num_classes=req.num_classes or 1000 # ImageNet default
|
| 143 |
+
))
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
# Roast logic (from original app)
|
| 147 |
+
ROASTS = [
|
| 148 |
+
"Your neural network is just an expensive random number generator.",
|
| 149 |
+
"I bet your model's accuracy is 50.1% and you're calling it 'promising results'.",
|
| 150 |
+
"Random guessing doesn't need 8 GPUs and a PhD to run.",
|
| 151 |
+
"Your transformer probably learned to predict the dataset bias, not the actual task.",
|
| 152 |
+
"If random baseline beats your model, maybe try a different career?",
|
| 153 |
+
"Your model: 47% accuracy. Random baseline: 50%. Congratulations, you made it worse.",
|
| 154 |
+
]
|
| 155 |
+
|
| 156 |
+
def get_roast():
|
| 157 |
+
"""Get roasted for probably having a model worse than random"""
|
| 158 |
+
return random.choice(ROASTS)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# --- Gradio Interface Functions ---
|
| 162 |
+
|
| 163 |
+
def handle_classification(task_choice, dataset_size, num_classes, classes_str, dist_str):
|
| 164 |
+
"""Gradio handler for the classification tab"""
|
| 165 |
+
try:
|
| 166 |
+
# 1. Parse Inputs
|
| 167 |
+
task_name = task_choice
|
| 168 |
+
if task_choice == "image_classification (1000 class)":
|
| 169 |
+
task_name = "image_classification"
|
| 170 |
+
num_classes = 1000 # Override
|
| 171 |
+
|
| 172 |
+
classes_list = [c.strip() for c in classes_str.split(',')] if classes_str else None
|
| 173 |
+
|
| 174 |
+
target_dist = None
|
| 175 |
+
if dist_str:
|
| 176 |
+
try:
|
| 177 |
+
target_dist = json.loads(dist_str)
|
| 178 |
+
if not isinstance(target_dist, dict):
|
| 179 |
+
raise ValueError("JSON must be an object/dictionary.")
|
| 180 |
+
except json.JSONDecodeError as e:
|
| 181 |
+
raise gr.Error(f"Invalid JSON in target distribution: {e}")
|
| 182 |
+
except ValueError as e:
|
| 183 |
+
raise gr.Error(str(e))
|
| 184 |
+
|
| 185 |
+
# 2. Build Request
|
| 186 |
+
request = BaselineRequest(
|
| 187 |
+
task=task_name,
|
| 188 |
+
dataset_size=int(dataset_size),
|
| 189 |
+
output_format="categorical",
|
| 190 |
+
classes=classes_list,
|
| 191 |
+
num_classes=int(num_classes) if num_classes else None,
|
| 192 |
+
target_distribution=target_dist
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# 3. Get Result
|
| 196 |
+
if request.task in TASK_HANDLERS:
|
| 197 |
+
result = TASK_HANDLERS[request.task](request)
|
| 198 |
+
else: # "custom"
|
| 199 |
+
result = generate_random_classification(request)
|
| 200 |
+
|
| 201 |
+
# 4. Format Output
|
| 202 |
+
response = BaselineResponse(task=request.task, **result)
|
| 203 |
+
return (
|
| 204 |
+
response.task,
|
| 205 |
+
response.baseline_type,
|
| 206 |
+
response.metrics,
|
| 207 |
+
response.sample_predictions,
|
| 208 |
+
response.reality_check,
|
| 209 |
+
response.advice
|
| 210 |
+
)
|
| 211 |
+
except Exception as e:
|
| 212 |
+
raise gr.Error(str(e))
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def handle_regression(dataset_size):
|
| 216 |
+
"""Gradio handler for the regression tab"""
|
| 217 |
+
try:
|
| 218 |
+
request = BaselineRequest(
|
| 219 |
+
task="regression",
|
| 220 |
+
dataset_size=int(dataset_size),
|
| 221 |
+
output_format="continuous"
|
| 222 |
+
)
|
| 223 |
+
result = generate_random_regression(request)
|
| 224 |
+
response = BaselineResponse(task=request.task, **result)
|
| 225 |
+
return (
|
| 226 |
+
response.task,
|
| 227 |
+
response.baseline_type,
|
| 228 |
+
response.metrics,
|
| 229 |
+
response.sample_predictions,
|
| 230 |
+
response.reality_check,
|
| 231 |
+
response.advice
|
| 232 |
+
)
|
| 233 |
+
except Exception as e:
|
| 234 |
+
raise gr.Error(str(e))
|
| 235 |
+
|
| 236 |
+
def handle_sequence(task_choice, dataset_size, seq_len, vocab_str):
|
| 237 |
+
"""Gradio handler for the generation/sequence tab"""
|
| 238 |
+
try:
|
| 239 |
+
vocab_list = [c.strip() for c in vocab_str.split(',')] if vocab_str else None
|
| 240 |
+
|
| 241 |
+
request = BaselineRequest(
|
| 242 |
+
task=task_choice,
|
| 243 |
+
dataset_size=int(dataset_size),
|
| 244 |
+
output_format="sequence",
|
| 245 |
+
classes=vocab_list,
|
| 246 |
+
sequence_length=int(seq_len) if seq_len else 50
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
if request.task in TASK_HANDLERS:
|
| 250 |
+
result = TASK_HANDLERS[request.task](request)
|
| 251 |
+
else: # "custom"
|
| 252 |
+
result = generate_random_sequence(request)
|
| 253 |
+
|
| 254 |
+
response = BaselineResponse(task=request.task, **result)
|
| 255 |
+
return (
|
| 256 |
+
response.task,
|
| 257 |
+
response.baseline_type,
|
| 258 |
+
response.metrics,
|
| 259 |
+
response.sample_predictions,
|
| 260 |
+
response.reality_check,
|
| 261 |
+
response.advice
|
| 262 |
+
)
|
| 263 |
+
except Exception as e:
|
| 264 |
+
raise gr.Error(str(e))
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
# --- Gradio UI Layout ---
|
| 268 |
+
|
| 269 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Random Baseline API") as demo:
|
| 270 |
+
gr.Markdown(
|
| 271 |
+
"""
|
| 272 |
+
# Random Baseline API
|
| 273 |
+
**The most honest ML API in existence. Keeping researchers humble since 2025.**
|
| 274 |
+
|
| 275 |
+
Get a random baseline for your ML task. Because sometimes you need to know how bad 'bad' really is.
|
| 276 |
+
"""
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
with gr.Tabs():
|
| 280 |
+
# --- Classification Tab ---
|
| 281 |
+
with gr.TabItem("Classification"):
|
| 282 |
+
with gr.Row():
|
| 283 |
+
with gr.Column(scale=1):
|
| 284 |
+
task_cls = gr.Radio(
|
| 285 |
+
["sentiment", "image_classification (1000 class)", "custom"],
|
| 286 |
+
label="Task",
|
| 287 |
+
value="sentiment"
|
| 288 |
+
)
|
| 289 |
+
dataset_size_cls = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
|
| 290 |
+
|
| 291 |
+
# Custom options
|
| 292 |
+
num_classes_cls = gr.Number(
|
| 293 |
+
label="Number of Classes (if classes not specified)",
|
| 294 |
+
value=10,
|
| 295 |
+
visible=False,
|
| 296 |
+
minimum=1,
|
| 297 |
+
step=1
|
| 298 |
+
)
|
| 299 |
+
classes_cls = gr.Textbox(
|
| 300 |
+
label="Comma-separated classes (e.g., cat,dog,fish)",
|
| 301 |
+
visible=False,
|
| 302 |
+
placeholder="cat, dog, fish"
|
| 303 |
+
)
|
| 304 |
+
dist_cls = gr.Textbox(
|
| 305 |
+
label='JSON target distribution (e.g., {"cat": 0.8})',
|
| 306 |
+
visible=False,
|
| 307 |
+
placeholder='{"cat": 0.8, "dog": 0.1, "fish": 0.1}'
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
btn_cls = gr.Button("Get Classification Baseline", variant="primary")
|
| 311 |
+
|
| 312 |
+
with gr.Column(scale=2):
|
| 313 |
+
out_task_cls = gr.Textbox(label="Task", interactive=False)
|
| 314 |
+
out_btype_cls = gr.Textbox(label="Baseline Type", interactive=False)
|
| 315 |
+
out_metrics_cls = gr.JSON(label="Metrics")
|
| 316 |
+
out_preds_cls = gr.JSON(label="Sample Predictions")
|
| 317 |
+
out_reality_cls = gr.Textbox(label="Reality Check", lines=3, interactive=False)
|
| 318 |
+
out_advice_cls = gr.Textbox(label="Advice", lines=3, interactive=False)
|
| 319 |
+
|
| 320 |
+
# --- Regression Tab ---
|
| 321 |
+
with gr.TabItem("Regression"):
|
| 322 |
+
with gr.Row():
|
| 323 |
+
with gr.Column(scale=1):
|
| 324 |
+
dataset_size_reg = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
|
| 325 |
+
btn_reg = gr.Button("Get Regression Baseline", variant="primary")
|
| 326 |
+
|
| 327 |
+
with gr.Column(scale=2):
|
| 328 |
+
out_task_reg = gr.Textbox(label="Task", interactive=False)
|
| 329 |
+
out_btype_reg = gr.Textbox(label="Baseline Type", interactive=False)
|
| 330 |
+
out_metrics_reg = gr.JSON(label="Metrics")
|
| 331 |
+
out_preds_reg = gr.JSON(label="Sample Predictions")
|
| 332 |
+
out_reality_reg = gr.Textbox(label="Reality Check", lines=3, interactive=False)
|
| 333 |
+
out_advice_reg = gr.Textbox(label="Advice", lines=3, interactive=False)
|
| 334 |
+
|
| 335 |
+
# --- Generation/Sequence Tab ---
|
| 336 |
+
with gr.TabItem("Generation / Sequence"):
|
| 337 |
+
with gr.Row():
|
| 338 |
+
with gr.Column(scale=1):
|
| 339 |
+
task_seq = gr.Radio(
|
| 340 |
+
["chess_moves", "custom"],
|
| 341 |
+
label="Task",
|
| 342 |
+
value="chess_moves"
|
| 343 |
+
)
|
| 344 |
+
dataset_size_seq = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
|
| 345 |
+
|
| 346 |
+
# Custom options
|
| 347 |
+
seq_len_seq = gr.Number(label="Sequence Length", value=50, visible=False, minimum=1, step=1)
|
| 348 |
+
vocab_seq = gr.Textbox(
|
| 349 |
+
label="Comma-separated vocabulary (e.g., a,b,c)",
|
| 350 |
+
visible=False,
|
| 351 |
+
placeholder="a, b, c, <pad>, <eos>"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
btn_seq = gr.Button("Get Sequence Baseline", variant="primary")
|
| 355 |
+
|
| 356 |
+
with gr.Column(scale=2):
|
| 357 |
+
out_task_seq = gr.Textbox(label="Task", interactive=False)
|
| 358 |
+
out_btype_seq = gr.Textbox(label="Baseline Type", interactive=False)
|
| 359 |
+
out_metrics_seq = gr.JSON(label="Metrics")
|
| 360 |
+
out_preds_seq = gr.JSON(label="Sample Predictions")
|
| 361 |
+
out_reality_seq = gr.Textbox(label="Reality Check", lines=3, interactive=False)
|
| 362 |
+
out_advice_seq = gr.Textbox(label="Advice", lines=3, interactive=False)
|
| 363 |
+
|
| 364 |
+
# --- Roast Tab ---
|
| 365 |
+
with gr.TabItem("Roast My Model"):
|
| 366 |
+
gr.Markdown("Feeling too good about your model's 98% accuracy on a balanced dataset? Let us fix that.")
|
| 367 |
+
btn_roast = gr.Button("Roast Me!", variant="stop")
|
| 368 |
+
out_roast = gr.Textbox(label="Your Roast", lines=3, interactive=False)
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
# --- UI Listeners ---
|
| 372 |
+
|
| 373 |
+
def update_cls_ui(task):
|
| 374 |
+
"""Show/hide custom classification options"""
|
| 375 |
+
if task == "custom":
|
| 376 |
+
return {
|
| 377 |
+
num_classes_cls: gr.update(visible=True, value=10),
|
| 378 |
+
classes_cls: gr.update(visible=True),
|
| 379 |
+
dist_cls: gr.update(visible=True)
|
| 380 |
+
}
|
| 381 |
+
elif task == "image_classification (1000 class)":
|
| 382 |
+
return {
|
| 383 |
+
num_classes_cls: gr.update(visible=False, value=1000),
|
| 384 |
+
classes_cls: gr.update(visible=False),
|
| 385 |
+
dist_cls: gr.update(visible=False)
|
| 386 |
+
}
|
| 387 |
+
else: # sentiment
|
| 388 |
+
return {
|
| 389 |
+
num_classes_cls: gr.update(visible=False),
|
| 390 |
+
classes_cls: gr.update(visible=False),
|
| 391 |
+
dist_cls: gr.update(visible=False)
|
| 392 |
+
}
|
| 393 |
+
|
| 394 |
+
task_cls.change(
|
| 395 |
+
fn=update_cls_ui,
|
| 396 |
+
inputs=task_cls,
|
| 397 |
+
outputs=[num_classes_cls, classes_cls, dist_cls]
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
def update_seq_ui(task):
|
| 401 |
+
"""Show/hide custom sequence options"""
|
| 402 |
+
if task == "custom":
|
| 403 |
+
return {
|
| 404 |
+
seq_len_seq: gr.update(visible=True),
|
| 405 |
+
vocab_seq: gr.update(visible=True)
|
| 406 |
+
}
|
| 407 |
+
else: # chess_moves
|
| 408 |
+
return {
|
| 409 |
+
seq_len_seq: gr.update(visible=False),
|
| 410 |
+
vocab_seq: gr.update(visible=False)
|
| 411 |
+
}
|
| 412 |
+
|
| 413 |
+
task_seq.change(
|
| 414 |
+
fn=update_seq_ui,
|
| 415 |
+
inputs=task_seq,
|
| 416 |
+
outputs=[seq_len_seq, vocab_seq]
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
# Button click handlers
|
| 420 |
+
cls_outputs = [out_task_cls, out_btype_cls, out_metrics_cls, out_preds_cls, out_reality_cls, out_advice_cls]
|
| 421 |
+
btn_cls.click(
|
| 422 |
+
fn=handle_classification,
|
| 423 |
+
inputs=[task_cls, dataset_size_cls, num_classes_cls, classes_cls, dist_cls],
|
| 424 |
+
outputs=cls_outputs
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
reg_outputs = [out_task_reg, out_btype_reg, out_metrics_reg, out_preds_reg, out_reality_reg, out_advice_reg]
|
| 428 |
+
btn_reg.click(
|
| 429 |
+
fn=handle_regression,
|
| 430 |
+
inputs=[dataset_size_reg],
|
| 431 |
+
outputs=reg_outputs
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
seq_outputs = [out_task_seq, out_btype_seq, out_metrics_seq, out_preds_seq, out_reality_seq, out_advice_seq]
|
| 435 |
+
btn_seq.click(
|
| 436 |
+
fn=handle_sequence,
|
| 437 |
+
inputs=[task_seq, dataset_size_seq, seq_len_seq, vocab_seq],
|
| 438 |
+
outputs=seq_outputs
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
btn_roast.click(fn=get_roast, inputs=None, outputs=out_roast)
|
| 442 |
|
| 443 |
|
| 444 |
if __name__ == "__main__":
|
| 445 |
+
# To run this, save as a .py file and run:
|
| 446 |
+
# 1. pip install gradio pydantic numpy
|
| 447 |
+
# 2. python your_app_name.py
|
| 448 |
+
print("Starting Gradio app... Access it at http://127.0.0.1:7860 (or the URL shown below)")
|
| 449 |
demo.launch()
|