|
import gradio as gr
|
|
import numpy as np
|
|
import random
|
|
import spaces
|
|
import torch
|
|
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
|
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
|
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
|
|
|
dtype = torch.bfloat16
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
|
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
|
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
|
torch.cuda.empty_cache()
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max
|
|
MAX_IMAGE_SIZE = 2048
|
|
|
|
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
|
|
|
@spaces.GPU(duration=75)
|
|
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
|
if randomize_seed:
|
|
seed = random.randint(0, MAX_SEED)
|
|
generator = torch.Generator().manual_seed(seed)
|
|
|
|
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
|
prompt=prompt,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=num_inference_steps,
|
|
width=width,
|
|
height=height,
|
|
generator=generator,
|
|
output_type="pil",
|
|
good_vae=good_vae,
|
|
):
|
|
yield img, seed
|
|
|
|
examples = [
|
|
"a tiny astronaut hatching from an egg on the moon",
|
|
"a cat holding a sign that says hello world",
|
|
"an anime illustration of a wiener schnitzel",
|
|
]
|
|
|
|
css="""
|
|
#col-container {
|
|
margin: 0 auto;
|
|
max-width: 520px;
|
|
}
|
|
"""
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
|
|
with gr.Column(elem_id="col-container"):
|
|
gr.Markdown(f"""# FLUX.1 [dev]
|
|
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
|
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
|
""")
|
|
|
|
with gr.Row():
|
|
|
|
prompt = gr.Text(
|
|
label="Prompt",
|
|
show_label=False,
|
|
max_lines=1,
|
|
placeholder="Enter your prompt",
|
|
container=False,
|
|
)
|
|
|
|
run_button = gr.Button("Run", scale=0)
|
|
|
|
result = gr.Image(label="Result", show_label=False)
|
|
|
|
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
seed = gr.Slider(
|
|
label="Seed",
|
|
minimum=0,
|
|
maximum=MAX_SEED,
|
|
step=1,
|
|
value=0,
|
|
)
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
with gr.Row():
|
|
|
|
width = gr.Slider(
|
|
label="Width",
|
|
minimum=256,
|
|
maximum=MAX_IMAGE_SIZE,
|
|
step=32,
|
|
value=1024,
|
|
)
|
|
|
|
height = gr.Slider(
|
|
label="Height",
|
|
minimum=256,
|
|
maximum=MAX_IMAGE_SIZE,
|
|
step=32,
|
|
value=1024,
|
|
)
|
|
|
|
with gr.Row():
|
|
|
|
guidance_scale = gr.Slider(
|
|
label="Guidance Scale",
|
|
minimum=1,
|
|
maximum=15,
|
|
step=0.1,
|
|
value=3.5,
|
|
)
|
|
|
|
num_inference_steps = gr.Slider(
|
|
label="Number of inference steps",
|
|
minimum=1,
|
|
maximum=50,
|
|
step=1,
|
|
value=28,
|
|
)
|
|
|
|
gr.Examples(
|
|
examples = examples,
|
|
fn = infer,
|
|
inputs = [prompt],
|
|
outputs = [result, seed],
|
|
cache_examples="lazy"
|
|
)
|
|
|
|
gr.on(
|
|
triggers=[run_button.click, prompt.submit],
|
|
fn = infer,
|
|
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
|
outputs = [result, seed]
|
|
)
|
|
|
|
demo.launch() |