File size: 11,739 Bytes
568d323
 
 
 
 
 
 
 
 
 
 
 
c4c937b
568d323
 
bd85747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4c937b
bd85747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4c937b
568d323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fa3c41
 
 
 
 
568d323
c4c937b
 
568d323
c4c937b
568d323
c4c937b
568d323
 
 
 
0fa3c41
 
 
 
 
 
 
 
 
 
568d323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4c937b
 
 
 
568d323
 
 
 
 
 
 
c4c937b
568d323
 
 
 
 
 
 
 
 
 
c4c937b
568d323
 
101a4d3
568d323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4c937b
568d323
0fa3c41
568d323
 
 
0fa3c41
 
568d323
c4c937b
 
 
568d323
 
 
a426ef3
 
 
 
 
568d323
 
 
 
c4c937b
568d323
 
 
 
 
 
c4c937b
568d323
 
 
 
 
 
 
 
 
c4c937b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable

from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
from aura_sr import AuraSR
from gradio_imageslider import ImageSlider

from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

colors.orange_red = colors.Color(
    name="orange_red",
    c50="#FFF0E5",
    c100="#FFE0CC",
    c200="#FFC299",
    c300="#FFA366",
    c400="#FF8533",
    c500="#FF4500",
    c600="#E63E00",
    c700="#CC3700",
    c800="#B33000",
    c900="#992900",
    c950="#802200",
)

class OrangeRedTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.orange_red, # Use the new color
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_secondary_text_color="black",
            button_secondary_text_color_hover="white",
            button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
            button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
            button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
            button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

orange_red_theme = OrangeRedTheme()


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# --- # Device and CUDA Setup Check ---
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
    print("current device:", torch.cuda.current_device())
    print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))

print("Using device:", device)

MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")

pipe.load_lora_weights("prithivMLmods/Kontext-Top-Down-View", weight_name="Kontext-Top-Down-View.safetensors", adapter_name="top-down")
pipe.load_lora_weights("prithivMLmods/Kontext-Bottom-Up-View", weight_name="Kontext-Bottom-Up-View.safetensors", adapter_name="bottom-up")
pipe.load_lora_weights("prithivMLmods/Kontext-CAM-Left-View", weight_name="Kontext-CAM-Left-View.safetensors", adapter_name="left-view")
pipe.load_lora_weights("prithivMLmods/Kontext-CAM-Right-View", weight_name="Kontext-CAM-Right-View.safetensors", adapter_name="right-view")
pipe.load_lora_weights("starsfriday/Kontext-Remover-General-LoRA", weight_name="kontext_remove.safetensors", adapter_name="kontext-remove")

aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")

@spaces.GPU
def infer(input_image, prompt, lora_adapter, upscale_image, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
    """
    Perform image editing and optional upscaling, returning a pair for the ImageSlider.
    """
    if not input_image:
        raise gr.Error("Please upload an image for editing.")

    if lora_adapter == "Kontext-Top-Down-View":
        pipe.set_adapters(["top-down"], adapter_weights=[1.0])
    elif lora_adapter == "Kontext-Bottom-Up-View":
        pipe.set_adapters(["bottom-up"], adapter_weights=[1.0])
    elif lora_adapter == "Kontext-CAM-Left-View":
        pipe.set_adapters(["left-view"], adapter_weights=[1.0])
    elif lora_adapter == "Kontext-CAM-Right-View":
        pipe.set_adapters(["right-view"], adapter_weights=[1.0])
    elif lora_adapter == "Kontext-Remover":
        pipe.set_adapters(["kontext-remove"], adapter_weights=[1.0])
        
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    original_image = input_image.copy().convert("RGB")
    
    image = pipe(
        image=original_image, 
        prompt=prompt,
        guidance_scale=guidance_scale,
        width = original_image.size[0],
        height = original_image.size[1],
        num_inference_steps=steps,
        generator=torch.Generator().manual_seed(seed),
    ).images[0]

    if upscale_image:
        progress(0.8, desc="Upscaling image...")
        image = aura_sr.upscale_4x(image)

    return (original_image, image), seed, gr.Button(visible=True)

@spaces.GPU
def infer_example(input_image, prompt, lora_adapter):
    """
    Wrapper function for gr.Examples to call the main infer logic for the slider.
    """
    (original_image, generated_image), seed, _ = infer(input_image, prompt, lora_adapter, upscale_image=False)
    return (original_image, generated_image), seed

css="""
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
#main-title h1 {font-size: 2.1em !important;}
"""

with gr.Blocks(css=css, theme=orange_red_theme) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# **Kontext-Photo-Mate-v2**", elem_id="main-title")
        gr.Markdown("Image manipulation with FLUX.1 Kontext adapters. [How to Use](https://huggingface.co/spaces/prithivMLmods/Photo-Mate-i2i/discussions/2)")
        
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Upload Image", type="pil", height="300")
                with gr.Row():
                    prompt = gr.Text(
                        label="Edit Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt for editing (e.g., 'Remove glasses')",
                        container=False,
                    )
                    run_button = gr.Button("Run", variant="primary", scale=0)
                with gr.Accordion("Advanced Settings", open=False):
                    
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=10,
                        step=0.1,
                        value=2.5,
                    )       
                    
                    steps = gr.Slider(
                        label="Steps",
                        minimum=1,
                        maximum=30,
                        value=28,
                        step=1
                    )
                    
            with gr.Column():
                output_slider = ImageSlider(label="Before / After", show_label=False, interactive=False)
                reuse_button = gr.Button("Reuse this image", visible=False)

                with gr.Row():
                    lora_adapter = gr.Dropdown(
                        label="Chosen LoRA",
                        choices=["Kontext-Top-Down-View", "Kontext-Remover", "Kontext-Bottom-Up-View", "Kontext-CAM-Left-View", "Kontext-CAM-Right-View"],
                        value="Kontext-Top-Down-View"
                    )
                    
                with gr.Row():
                    upscale_checkbox = gr.Checkbox(label="Upscale the final image", value=False)

        gr.Examples(
            examples=[
                ["examples/1.jpeg", "[photo content], recreate the scene from a top-down perspective. Maintain all visual proportions, lighting consistency, and realistic spatial relationships. Ensure the background, textures, and environmental shadows remain naturally aligned from this elevated angle.", "Kontext-Top-Down-View"],
                ["examples/2.jpg", "Remove the apples under the kitten's body", "Kontext-Remover"],
                ["examples/3.jpg", "[photo content], recreate the scene from a bottom-up perspective. Preserve accurate depth, scale, and lighting direction to enhance realism. Ensure the background sky or floor elements adjust naturally to the new angle, maintaining authentic shadowing and perspective.", "Kontext-Bottom-Up-View"],
                ["examples/4.jpg", "[photo content], render the image from the left-side perspective, keeping consistent lighting, textures, and proportions. Maintain the realism of all surrounding elements while revealing previously unseen left-side details consistent with the object’s or scene’s structure", "Kontext-CAM-Left-View"],
                ["examples/5.jpg", "[photo content], generate the right-side perspective of the scene. Ensure natural lighting, accurate geometry, and realistic textures. Maintain harmony with the original image’s environment, shadows, and visual tone while providing the right-side visual continuation.", "Kontext-CAM-Right-View"],
            ],
            inputs=[input_image, prompt, lora_adapter],
            outputs=[output_slider, seed],
            fn=infer_example,
            cache_examples="lazy",
            label="Examples"
        )
            
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[input_image, prompt, lora_adapter, upscale_checkbox, seed, randomize_seed, guidance_scale, steps],
        outputs=[output_slider, seed, reuse_button]
    )
    
    reuse_button.click(
        fn=lambda images: images[1] if isinstance(images, (list, tuple)) and len(images) > 1 else images,
        inputs=[output_slider],
        outputs=[input_image]
    )

demo.launch(mcp_server=True, ssr_mode=False, show_error=True)