Spaces:
Running
Running
| import os | |
| import sys | |
| import soxr | |
| import time | |
| import torch | |
| import librosa | |
| import logging | |
| import traceback | |
| import numpy as np | |
| import soundfile as sf | |
| import noisereduce as nr | |
| from pedalboard import ( | |
| Pedalboard, | |
| Chorus, | |
| Distortion, | |
| Reverb, | |
| PitchShift, | |
| Limiter, | |
| Gain, | |
| Bitcrush, | |
| Clipping, | |
| Compressor, | |
| Delay, | |
| ) | |
| now_dir = os.getcwd() | |
| sys.path.append(now_dir) | |
| from rvc.infer.pipeline import Pipeline as VC | |
| from rvc.lib.utils import load_audio_infer, load_embedding | |
| from rvc.lib.tools.split_audio import process_audio, merge_audio | |
| from rvc.lib.algorithm.synthesizers import Synthesizer | |
| from rvc.configs.config import Config | |
| logging.getLogger("httpx").setLevel(logging.WARNING) | |
| logging.getLogger("httpcore").setLevel(logging.WARNING) | |
| logging.getLogger("faiss").setLevel(logging.WARNING) | |
| logging.getLogger("faiss.loader").setLevel(logging.WARNING) | |
| class VoiceConverter: | |
| """ | |
| A class for performing voice conversion using the Retrieval-Based Voice Conversion (RVC) method. | |
| """ | |
| def __init__(self): | |
| """ | |
| Initializes the VoiceConverter with default configuration, and sets up models and parameters. | |
| """ | |
| self.config = Config() # Load configuration | |
| self.hubert_model = ( | |
| None # Initialize the Hubert model (for embedding extraction) | |
| ) | |
| self.last_embedder_model = None # Last used embedder model | |
| self.tgt_sr = None # Target sampling rate for the output audio | |
| self.net_g = None # Generator network for voice conversion | |
| self.vc = None # Voice conversion pipeline instance | |
| self.cpt = None # Checkpoint for loading model weights | |
| self.version = None # Model version | |
| self.n_spk = None # Number of speakers in the model | |
| self.use_f0 = None # Whether the model uses F0 | |
| self.loaded_model = None | |
| def load_hubert(self, embedder_model: str, embedder_model_custom: str = None): | |
| """ | |
| Loads the HuBERT model for speaker embedding extraction. | |
| Args: | |
| embedder_model (str): Path to the pre-trained HuBERT model. | |
| embedder_model_custom (str): Path to the custom HuBERT model. | |
| """ | |
| self.hubert_model = load_embedding(embedder_model, embedder_model_custom) | |
| self.hubert_model = self.hubert_model.to(self.config.device).float() | |
| self.hubert_model.eval() | |
| def remove_audio_noise(data, sr, reduction_strength=0.7): | |
| """ | |
| Removes noise from an audio file using the NoiseReduce library. | |
| Args: | |
| data (numpy.ndarray): The audio data as a NumPy array. | |
| sr (int): The sample rate of the audio data. | |
| reduction_strength (float): Strength of the noise reduction. Default is 0.7. | |
| """ | |
| try: | |
| reduced_noise = nr.reduce_noise( | |
| y=data, sr=sr, prop_decrease=reduction_strength | |
| ) | |
| return reduced_noise | |
| except Exception as error: | |
| print(f"An error occurred removing audio noise: {error}") | |
| return None | |
| def convert_audio_format(input_path, output_path, output_format): | |
| """ | |
| Converts an audio file to a specified output format. | |
| Args: | |
| input_path (str): Path to the input audio file. | |
| output_path (str): Path to the output audio file. | |
| output_format (str): Desired audio format (e.g., "WAV", "MP3"). | |
| """ | |
| try: | |
| if output_format != "WAV": | |
| print(f"Saving audio as {output_format}...") | |
| audio, sample_rate = librosa.load(input_path, sr=None) | |
| common_sample_rates = [ | |
| 8000, | |
| 11025, | |
| 12000, | |
| 16000, | |
| 22050, | |
| 24000, | |
| 32000, | |
| 44100, | |
| 48000, | |
| ] | |
| target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate)) | |
| audio = librosa.resample( | |
| audio, orig_sr=sample_rate, target_sr=target_sr, res_type="soxr_vhq" | |
| ) | |
| sf.write(output_path, audio, target_sr, format=output_format.lower()) | |
| return output_path | |
| except Exception as error: | |
| print(f"An error occurred converting the audio format: {error}") | |
| def post_process_audio( | |
| audio_input, | |
| sample_rate, | |
| **kwargs, | |
| ): | |
| board = Pedalboard() | |
| if kwargs.get("reverb", False): | |
| reverb = Reverb( | |
| room_size=kwargs.get("reverb_room_size", 0.5), | |
| damping=kwargs.get("reverb_damping", 0.5), | |
| wet_level=kwargs.get("reverb_wet_level", 0.33), | |
| dry_level=kwargs.get("reverb_dry_level", 0.4), | |
| width=kwargs.get("reverb_width", 1.0), | |
| freeze_mode=kwargs.get("reverb_freeze_mode", 0), | |
| ) | |
| board.append(reverb) | |
| if kwargs.get("pitch_shift", False): | |
| pitch_shift = PitchShift(semitones=kwargs.get("pitch_shift_semitones", 0)) | |
| board.append(pitch_shift) | |
| if kwargs.get("limiter", False): | |
| limiter = Limiter( | |
| threshold_db=kwargs.get("limiter_threshold", -6), | |
| release_ms=kwargs.get("limiter_release", 0.05), | |
| ) | |
| board.append(limiter) | |
| if kwargs.get("gain", False): | |
| gain = Gain(gain_db=kwargs.get("gain_db", 0)) | |
| board.append(gain) | |
| if kwargs.get("distortion", False): | |
| distortion = Distortion(drive_db=kwargs.get("distortion_gain", 25)) | |
| board.append(distortion) | |
| if kwargs.get("chorus", False): | |
| chorus = Chorus( | |
| rate_hz=kwargs.get("chorus_rate", 1.0), | |
| depth=kwargs.get("chorus_depth", 0.25), | |
| centre_delay_ms=kwargs.get("chorus_delay", 7), | |
| feedback=kwargs.get("chorus_feedback", 0.0), | |
| mix=kwargs.get("chorus_mix", 0.5), | |
| ) | |
| board.append(chorus) | |
| if kwargs.get("bitcrush", False): | |
| bitcrush = Bitcrush(bit_depth=kwargs.get("bitcrush_bit_depth", 8)) | |
| board.append(bitcrush) | |
| if kwargs.get("clipping", False): | |
| clipping = Clipping(threshold_db=kwargs.get("clipping_threshold", 0)) | |
| board.append(clipping) | |
| if kwargs.get("compressor", False): | |
| compressor = Compressor( | |
| threshold_db=kwargs.get("compressor_threshold", 0), | |
| ratio=kwargs.get("compressor_ratio", 1), | |
| attack_ms=kwargs.get("compressor_attack", 1.0), | |
| release_ms=kwargs.get("compressor_release", 100), | |
| ) | |
| board.append(compressor) | |
| if kwargs.get("delay", False): | |
| delay = Delay( | |
| delay_seconds=kwargs.get("delay_seconds", 0.5), | |
| feedback=kwargs.get("delay_feedback", 0.0), | |
| mix=kwargs.get("delay_mix", 0.5), | |
| ) | |
| board.append(delay) | |
| return board(audio_input, sample_rate) | |
| def convert_audio( | |
| self, | |
| audio_input_path: str, | |
| audio_output_path: str, | |
| model_path: str, | |
| index_path: str, | |
| pitch: int = 0, | |
| f0_file: str = None, | |
| f0_method: str = "rmvpe", | |
| index_rate: float = 0.75, | |
| volume_envelope: float = 1, | |
| protect: float = 0.5, | |
| hop_length: int = 128, | |
| split_audio: bool = False, | |
| f0_autotune: bool = False, | |
| f0_autotune_strength: float = 1, | |
| filter_radius: int = 3, | |
| embedder_model: str = "contentvec", | |
| embedder_model_custom: str = None, | |
| clean_audio: bool = False, | |
| clean_strength: float = 0.5, | |
| export_format: str = "WAV", | |
| post_process: bool = False, | |
| resample_sr: int = 0, | |
| sid: int = 0, | |
| **kwargs, | |
| ): | |
| """ | |
| Performs voice conversion on the input audio. | |
| Args: | |
| pitch (int): Key for F0 up-sampling. | |
| filter_radius (int): Radius for filtering. | |
| index_rate (float): Rate for index matching. | |
| volume_envelope (int): RMS mix rate. | |
| protect (float): Protection rate for certain audio segments. | |
| hop_length (int): Hop length for audio processing. | |
| f0_method (str): Method for F0 extraction. | |
| audio_input_path (str): Path to the input audio file. | |
| audio_output_path (str): Path to the output audio file. | |
| model_path (str): Path to the voice conversion model. | |
| index_path (str): Path to the index file. | |
| split_audio (bool): Whether to split the audio for processing. | |
| f0_autotune (bool): Whether to use F0 autotune. | |
| clean_audio (bool): Whether to clean the audio. | |
| clean_strength (float): Strength of the audio cleaning. | |
| export_format (str): Format for exporting the audio. | |
| f0_file (str): Path to the F0 file. | |
| embedder_model (str): Path to the embedder model. | |
| embedder_model_custom (str): Path to the custom embedder model. | |
| resample_sr (int, optional): Resample sampling rate. Default is 0. | |
| sid (int, optional): Speaker ID. Default is 0. | |
| **kwargs: Additional keyword arguments. | |
| """ | |
| if not model_path: | |
| print("No model path provided. Aborting conversion.") | |
| return | |
| self.get_vc(model_path, sid) | |
| try: | |
| start_time = time.time() | |
| print(f"Converting audio '{audio_input_path}'...") | |
| audio = load_audio_infer( | |
| audio_input_path, | |
| 16000, | |
| **kwargs, | |
| ) | |
| audio_max = np.abs(audio).max() / 0.95 | |
| if audio_max > 1: | |
| audio /= audio_max | |
| if not self.hubert_model or embedder_model != self.last_embedder_model: | |
| self.load_hubert(embedder_model, embedder_model_custom) | |
| self.last_embedder_model = embedder_model | |
| file_index = ( | |
| index_path.strip() | |
| .strip('"') | |
| .strip("\n") | |
| .strip('"') | |
| .strip() | |
| .replace("trained", "added") | |
| ) | |
| if self.tgt_sr != resample_sr >= 16000: | |
| self.tgt_sr = resample_sr | |
| if split_audio: | |
| chunks, intervals = process_audio(audio, 16000) | |
| print(f"Audio split into {len(chunks)} chunks for processing.") | |
| else: | |
| chunks = [] | |
| chunks.append(audio) | |
| converted_chunks = [] | |
| for c in chunks: | |
| audio_opt = self.vc.pipeline( | |
| model=self.hubert_model, | |
| net_g=self.net_g, | |
| sid=sid, | |
| audio=c, | |
| pitch=pitch, | |
| f0_method=f0_method, | |
| file_index=file_index, | |
| index_rate=index_rate, | |
| pitch_guidance=self.use_f0, | |
| filter_radius=filter_radius, | |
| volume_envelope=volume_envelope, | |
| version=self.version, | |
| protect=protect, | |
| hop_length=hop_length, | |
| f0_autotune=f0_autotune, | |
| f0_autotune_strength=f0_autotune_strength, | |
| f0_file=f0_file, | |
| ) | |
| converted_chunks.append(audio_opt) | |
| if split_audio: | |
| print(f"Converted audio chunk {len(converted_chunks)}") | |
| if split_audio: | |
| audio_opt = merge_audio(chunks, converted_chunks, intervals, 16000, self.tgt_sr) | |
| else: | |
| audio_opt = converted_chunks[0] | |
| if clean_audio: | |
| cleaned_audio = self.remove_audio_noise( | |
| audio_opt, self.tgt_sr, clean_strength | |
| ) | |
| if cleaned_audio is not None: | |
| audio_opt = cleaned_audio | |
| if post_process: | |
| audio_opt = self.post_process_audio( | |
| audio_input=audio_opt, | |
| sample_rate=self.tgt_sr, | |
| **kwargs, | |
| ) | |
| sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV") | |
| output_path_format = audio_output_path.replace( | |
| ".wav", f".{export_format.lower()}" | |
| ) | |
| audio_output_path = self.convert_audio_format( | |
| audio_output_path, output_path_format, export_format | |
| ) | |
| elapsed_time = time.time() - start_time | |
| print( | |
| f"Conversion completed at '{audio_output_path}' in {elapsed_time:.2f} seconds." | |
| ) | |
| except Exception as error: | |
| print(f"An error occurred during audio conversion: {error}") | |
| print(traceback.format_exc()) | |
| def convert_audio_batch( | |
| self, | |
| audio_input_paths: str, | |
| audio_output_path: str, | |
| **kwargs, | |
| ): | |
| """ | |
| Performs voice conversion on a batch of input audio files. | |
| Args: | |
| audio_input_paths (str): List of paths to the input audio files. | |
| audio_output_path (str): Path to the output audio file. | |
| resample_sr (int, optional): Resample sampling rate. Default is 0. | |
| sid (int, optional): Speaker ID. Default is 0. | |
| **kwargs: Additional keyword arguments. | |
| """ | |
| pid = os.getpid() | |
| try: | |
| with open( | |
| os.path.join(now_dir, "assets", "infer_pid.txt"), "w" | |
| ) as pid_file: | |
| pid_file.write(str(pid)) | |
| start_time = time.time() | |
| print(f"Converting audio batch '{audio_input_paths}'...") | |
| audio_files = [ | |
| f | |
| for f in os.listdir(audio_input_paths) | |
| if f.endswith( | |
| ( | |
| "wav", | |
| "mp3", | |
| "flac", | |
| "ogg", | |
| "opus", | |
| "m4a", | |
| "mp4", | |
| "aac", | |
| "alac", | |
| "wma", | |
| "aiff", | |
| "webm", | |
| "ac3", | |
| ) | |
| ) | |
| ] | |
| print(f"Detected {len(audio_files)} audio files for inference.") | |
| for a in audio_files: | |
| new_input = os.path.join(audio_input_paths, a) | |
| new_output = os.path.splitext(a)[0] + "_output.wav" | |
| new_output = os.path.join(audio_output_path, new_output) | |
| if os.path.exists(new_output): | |
| continue | |
| self.convert_audio( | |
| audio_input_path=new_input, | |
| audio_output_path=new_output, | |
| **kwargs, | |
| ) | |
| print(f"Conversion completed at '{audio_input_paths}'.") | |
| elapsed_time = time.time() - start_time | |
| print(f"Batch conversion completed in {elapsed_time:.2f} seconds.") | |
| except Exception as error: | |
| print(f"An error occurred during audio batch conversion: {error}") | |
| print(traceback.format_exc()) | |
| finally: | |
| os.remove(os.path.join(now_dir, "assets", "infer_pid.txt")) | |
| def get_vc(self, weight_root, sid): | |
| """ | |
| Loads the voice conversion model and sets up the pipeline. | |
| Args: | |
| weight_root (str): Path to the model weights. | |
| sid (int): Speaker ID. | |
| """ | |
| if sid == "" or sid == []: | |
| self.cleanup_model() | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| if not self.loaded_model or self.loaded_model != weight_root: | |
| self.load_model(weight_root) | |
| if self.cpt is not None: | |
| self.setup_network() | |
| self.setup_vc_instance() | |
| self.loaded_model = weight_root | |
| def cleanup_model(self): | |
| """ | |
| Cleans up the model and releases resources. | |
| """ | |
| if self.hubert_model is not None: | |
| del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr | |
| self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| del self.net_g, self.cpt | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| self.cpt = None | |
| def load_model(self, weight_root): | |
| """ | |
| Loads the model weights from the specified path. | |
| Args: | |
| weight_root (str): Path to the model weights. | |
| """ | |
| self.cpt = ( | |
| torch.load(weight_root, map_location="cpu") | |
| if os.path.isfile(weight_root) | |
| else None | |
| ) | |
| def setup_network(self): | |
| """ | |
| Sets up the network configuration based on the loaded checkpoint. | |
| """ | |
| if self.cpt is not None: | |
| self.tgt_sr = self.cpt["config"][-1] | |
| self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] | |
| self.use_f0 = self.cpt.get("f0", 1) | |
| self.version = self.cpt.get("version", "v1") | |
| self.text_enc_hidden_dim = 768 if self.version == "v2" else 256 | |
| self.vocoder = self.cpt.get("vocoder", "HiFi-GAN") | |
| self.net_g = Synthesizer( | |
| *self.cpt["config"], | |
| use_f0=self.use_f0, | |
| text_enc_hidden_dim=self.text_enc_hidden_dim, | |
| vocoder=self.vocoder, | |
| ) | |
| del self.net_g.enc_q | |
| self.net_g.load_state_dict(self.cpt["weight"], strict=False) | |
| self.net_g = self.net_g.to(self.config.device).float() | |
| self.net_g.eval() | |
| def setup_vc_instance(self): | |
| """ | |
| Sets up the voice conversion pipeline instance based on the target sampling rate and configuration. | |
| """ | |
| if self.cpt is not None: | |
| self.vc = VC(self.tgt_sr, self.config) | |
| self.n_spk = self.cpt["config"][-3] | |