Spaces:
Runtime error
Runtime error
| from scipy.io.wavfile import read | |
| import torch | |
| import numpy as np | |
| import os | |
| from multiprocessing import Pool | |
| from tqdm import tqdm | |
| # Change here | |
| base="jp_dataset/basic5000/wav" | |
| hann_window = {} | |
| def load_wav_to_torch(full_path): | |
| sampling_rate, data = read(full_path) | |
| # data, sampling_rate = librosa.load(full_path) | |
| return torch.FloatTensor(data.astype(np.float32)), sampling_rate | |
| def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): | |
| if torch.min(y) < -1.: | |
| print('min value is ', torch.min(y)) | |
| if torch.max(y) > 1.: | |
| print('max value is ', torch.max(y)) | |
| global hann_window | |
| dtype_device = str(y.dtype) + '_' + str(y.device) | |
| wnsize_dtype_device = str(win_size) + '_' + dtype_device | |
| if wnsize_dtype_device not in hann_window: | |
| hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) | |
| y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') | |
| y = y.squeeze(1) | |
| spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], | |
| center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) | |
| spec = torch.view_as_real(spec) | |
| spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | |
| return spec | |
| def get_audio(filename): | |
| max_wave_length = 32768.0 | |
| filter_length = 1024 | |
| hop_length = 256 | |
| win_length = 1024 | |
| audio, sampling_rate = load_wav_to_torch(filename) | |
| audio_norm = audio / max_wave_length | |
| audio_norm = audio_norm.unsqueeze(0) | |
| spec_filename = filename.replace(".wav", ".spec.pt") | |
| spec = spectrogram_torch(audio_norm, filter_length, | |
| sampling_rate, hop_length, win_length, | |
| center=False) | |
| spec = torch.squeeze(spec, 0) | |
| torch.save(spec, spec_filename) | |
| if __name__=="__main__": | |
| waves = [] | |
| batch_size = 16 | |
| for wav_name in os.listdir(base): | |
| wav_path = os.path.join(base, wav_name) | |
| if wav_path.endswith(".wav"): | |
| waves.append(wav_path) | |
| with Pool(batch_size) as p: | |
| print(list((tqdm(p.imap(get_audio, waves), total=len(waves))))) | |