File size: 27,948 Bytes
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb0e70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb0e70e
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
aebf6ac
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aebf6ac
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aebf6ac
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
aebf6ac
 
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aebf6ac
 
 
 
7ebe82f
 
aebf6ac
 
 
 
7ebe82f
 
aebf6ac
 
 
 
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aebf6ac
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aebf6ac
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aebf6ac
7ebe82f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from collections import Counter
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
import logging
from typing import List, Dict, Any
import gc

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Model configurations - maps display names to HF model paths
PREDEFINED_MODELS = [
     "meta-llama/Llama-3.2-1B",
     "google/gemma-2-2b",
     "Qwen/Qwen3-0.6B",
     "Qwen/Qwen2.5-0.5B",
     "Qwen/Qwen2.5-1.5B",
     "bigscience/bloom-560m",
     "CohereForAI/aya-expanse-8b",
     "common-pile/comma-v0.1-2t",
     "google/byt5-small",
     "google/byt5-small",
     "gsaltintas/supertoken_models-llama_gpt2",
]
# Global cache for loaded models
model_cache = {}

def parse_dataset(text):
    """Parse the input dataset text into structured questions"""
    if not text.strip():
        return [], "Please enter your dataset"
    
    lines = text.strip().split('\n')
    if len(lines) < 2:
        return [], "Dataset must have at least a header and one question"
    
    # Skip header and detect delimiter
    first_data_line = lines[1] if len(lines) > 1 else lines[0]
    delimiter = '\t' if '\t' in first_data_line else ','
    
    questions = []
    errors = []
    
    for i, line in enumerate(lines[1:], 2):  # Start from line 2 (after header)
        line = line.strip()
        if not line:
            continue
            
        parts = [part.strip().strip('"') for part in line.split(delimiter)]
        
        if len(parts) < 5:
            errors.append(f"Line {i}: Not enough columns (need 5, got {len(parts)})")
            continue
            
        question = {
            'question': parts[0],
            'correct_answer': parts[1],
            'choices': [parts[2], parts[3], parts[4]]
        }
        
        # Ensure correct answer is in choices
        if question['correct_answer'] not in question['choices']:
            question['choices'].append(question['correct_answer'])
        
        questions.append(question)
    
    error_msg = '\n'.join(errors) if errors else ""
    return questions, error_msg

def setup_tokenizer(model_path):
    tokenizer_name = model_path
    if "supertoken" in model_path:
        from huggingface_hub import list_repo_files, hf_hub_download
        import json
        files = list_repo_files(model_path)
        if "tokenizer_config.json" in files:
            tokenizer_path = hf_hub_download(repo_id=model_path, filename="tokenizer_config.json")
            with open(tokenizer_path) as f:
                tok_config = json.load(f)["data"]["tokenizer"]
            if tok_config["name"] == "huggingface":
                tokenizer_name = tok_config["path"]
            # todo: tiktoken
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=True, legacy=True)
    return tokenizer


def load_model_and_tokenizer(model_path, use_cache=True, progress_callback=None):
    """Load model and tokenizer with caching"""
    global model_cache
    
    if use_cache and model_path in model_cache:
        logger.info(f"Using cached model: {model_path}")
        if progress_callback:
            progress_callback(1.0, f"✅ Using cached model: {model_path}")
        return model_cache[model_path]
    
    try:
        if progress_callback:
            progress_callback(0.1, f"🔄 Starting to load model: {model_path}")
        
        logger.info(f"Loading model: {model_path}")
        
        # Check if CUDA is available
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        if progress_callback:
            progress_callback(0.2, f"📥 Loading tokenizer for {model_path}...")
        
        # Load tokenizer
        tokenizer = setup_tokenizer(model_path)
        
        # Add pad token if missing
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        
        if progress_callback:
            progress_callback(0.5, f"🧠 Loading model weights for {model_path}... (this may take a while)")
        
        # Load model with appropriate settings
        model = AutoModelForCausalLM.from_pretrained(
            model_path,
            torch_dtype=torch.float16 if device == "cuda" else torch.float32,
            device_map="auto" if device== "cuda" else None,
            trust_remote_code=True,
            low_cpu_mem_usage=True
        )
        
        model_info = {
            'tokenizer': tokenizer,
            'model': model,
            'device': device
        }
        
        if use_cache:
            model_cache[model_path] = model_info
        
        if progress_callback:
            progress_callback(1.0, f"✅ Successfully loaded model: {model_path}")
        
        return model_info
        
    except Exception as e:
        import code
        error_msg = f"❌ Error loading model {model_path}: {str(e)}"
        logger.error(error_msg)
        # code.interact(local=dict(globals(), **locals()))
        if progress_callback:
            progress_callback(0.0, error_msg)
        return None
    
def calculate_choice_likelihood(model, tokenizer, question, choice):
    """Calculate the log-likelihood of the choice given the question prompt"""
    try:
        prompt = f"Question: {question}\nAnswer: "
        prompt=question
        full_text = f"{prompt} {choice}"

        # Tokenize full input (prompt + answer)
        input_ids = tokenizer.encode(full_text, return_tensors="pt", add_special_tokens=False).to(model.device)
        prompt_ids = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False).to(model.device)

        if input_ids.size(1) <= prompt_ids.size(1):
            logger.warning("Answer tokens are empty after tokenization.")
            return float("-inf")
        
        with torch.no_grad():
            outputs = model(input_ids)
            logits = outputs.logits

        # Get logits for the answer tokens only
        answer_len = input_ids.size(1) - prompt_ids.size(1)
        target_ids = input_ids[:, -answer_len:]
        logits = logits[:, prompt_ids.size(1)-1:-1, :]  # shifted for next-token prediction

        log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
        token_log_probs = log_probs.gather(2, target_ids.unsqueeze(-1)).squeeze(-1)

        total_log_prob = token_log_probs.sum().item()
        return total_log_prob

    except Exception as e:
        logger.error(f"Error calculating likelihood for choice '{choice}': {str(e)}")
        return float("-inf")



def evaluate_model_on_questions(model_path, questions, progress_callback=None):
    """Evaluate a single model on all questions using likelihood-based scoring"""
    
    model_info = load_model_and_tokenizer(model_path, progress_callback=progress_callback)
    
    if model_info is None:
        return [{'error': f'Failed to load model {model_path}'}] * len(questions)
    
    results = []
    model = model_info['model']
    tokenizer = model_info['tokenizer']
    
    for i, question in enumerate(questions):
        try:
            # Calculate likelihood for each choice
            choice_likelihoods = {}
            choice_probs = {}
            
            for choice in question['choices']:
                likelihood = calculate_choice_likelihood(model, tokenizer, question['question'], choice)
                choice_likelihoods[choice] = likelihood
            
            # Convert log probabilities to probabilities for confidence scoring
            max_log_prob = max(choice_likelihoods.values())
            choice_probs = {choice: torch.exp(torch.tensor(log_prob - max_log_prob)).item() 
                          for choice, log_prob in choice_likelihoods.items()}
            
            # Normalize probabilities
            total_prob = sum(choice_probs.values())
            if total_prob > 0:
                choice_probs = {choice: prob / total_prob for choice, prob in choice_probs.items()}
            
            # Select the choice with highest likelihood
            predicted_choice = max(choice_likelihoods.keys(), key=lambda x: choice_likelihoods[x])
            is_correct = predicted_choice == question['correct_answer']
            
            # Confidence is the probability of the selected choice
            confidence = choice_probs.get(predicted_choice, 0.0)
            
            results.append({
                'question_idx': i,
                'predicted': predicted_choice,
                'correct': is_correct,
                'confidence': confidence,
                'choice_likelihoods': choice_likelihoods,
                'choice_probabilities': choice_probs,
                'raw_response': f"Likelihoods: {choice_likelihoods}"
            })
            
            if progress_callback:
                # Use remaining 80% for evaluation progress
                evaluation_progress = 0.2 + (i + 1) / len(questions) * 0.8
                progress_callback(evaluation_progress, f"🔍 Evaluating {model_path}: {i+1}/{len(questions)} questions (likelihood-based)")
            
        except Exception as e:
            logger.error(f"Error evaluating question {i} with {model_path}: {str(e)}")
            results.append({
                'question_idx': i,
                'predicted': question['choices'][0] if question['choices'] else '',
                'correct': False,
                'confidence': 0.0,
                'choice_likelihoods': {},
                'choice_probabilities': {},
                'raw_response': f"Error: {str(e)}"
            })
    
    return results

def run_evaluation(dataset_text, selected_predefined, custom_models_text="", progress=gr.Progress()):
    """Main evaluation function"""
    if not dataset_text.strip():
        return (
            "Please enter your dataset",
            "<p>No data provided</p>",
            None,
            None,
            gr.update(visible=True)
        )
    
    # Parse custom models
    custom_models = []
    if custom_models_text is None:
        custom_models_text = ""
    if custom_models_text.strip():
        custom_models = [model.strip() for model in custom_models_text.strip().split('\n') if model.strip()]
    
    # Combine selected models
    all_models = []
    
    # Add predefined models
    all_models.extend(selected_predefined)
    all_models.extend(custom_models)
    
    if not all_models:
        return (
            "Please select at least one model or add custom models",
            "<p>No models selected</p>",
            None,
            None,
            gr.update(visible=False)
        )
    
    # Parse dataset
    questions, parse_error = parse_dataset(dataset_text)
    
    if parse_error:
        return (
            f"Dataset parsing error:\n{parse_error}",
            "<p>Failed to parse dataset</p>",
            None,
            None,
            gr.update(visible=True)
        )
    
    if not questions:
        return (
            "No valid questions found in dataset",
            "<p>No questions to evaluate</p>",
            None,
            None,
            gr.update(visible=True)
        )
    
    # Run evaluation
    progress(0, "Starting evaluation...")
    results = {}
    total_steps = len(all_models) * len(questions)
    current_step = 0
    
    summary_md = create_summary_markdown({})
    for model_path in all_models:
        display_name = model_path.split('/')[-1] if '/' in model_path else model_path
        try:
            def model_progress(p, msg):
                nonlocal current_step
                current_step = int(p * len(questions))
                overall_progress = current_step / total_steps
                progress(overall_progress, msg)
            
            model_results = evaluate_model_on_questions(model_path, questions, model_progress)
            results[display_name] = model_results
            
        except Exception as e:
            logger.error(f"Failed to evaluate {display_name}: {str(e)}")
            results[display_name] = [{'error': str(e)}] * len(questions)
        
        # Clean up GPU memory
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
    
    # Generate outputs
    summary_stats = generate_summary_stats(questions, results)
    summary_md = create_summary_markdown(summary_stats)
    detailed_html = create_detailed_results_html(questions, results)
    accuracy_chart = create_accuracy_chart(summary_stats)
    confidence_chart = create_confidence_chart(results)
    
    return (
        summary_md,
        detailed_html,
        accuracy_chart,
        confidence_chart,
        gr.update(visible=True)
    )

def generate_summary_stats(questions, results):
    """Generate summary statistics for all models"""
    summary = {}
    
    for model, model_results in results.items():
        if not model_results or 'error' in model_results[0]:
            summary[model] = {
                'accuracy': 0.0,
                'correct': 0,
                'total': len(questions),
                'avg_confidence': 0.0,
                'error': model_results[0].get('error', 'Unknown error') if model_results else 'No results'
            }
            continue
            
        correct_count = sum(1 for r in model_results if r.get('correct', False))
        total_count = len(model_results)
        accuracy = correct_count / total_count if total_count > 0 else 0
        
        # Calculate average confidence
        avg_confidence = sum(r.get('confidence', 0) for r in model_results) / total_count if total_count > 0 else 0
        
        summary[model] = {
            'accuracy': accuracy,
            'correct': correct_count,
            'total': total_count,
            'avg_confidence': avg_confidence
        }
    
    return summary

def create_summary_markdown(summary_stats):
    """Create markdown summary of results"""
    if not summary_stats:
        return "No results available"
    
    # Sort by accuracy
    sorted_models = sorted(summary_stats.items(), key=lambda x: x[1]['accuracy'], reverse=True)
    
    lines = ["## 🏆 Model Performance Summary\n"]
    
    for i, (model, stats) in enumerate(sorted_models):
        if 'error' in stats:
            lines.append(f"❌ **{model}**: Error - {stats['error']}")
            continue
            
        accuracy_pct = stats['accuracy'] * 100
        medal = "🥇" if i == 0 else "🥈" if i == 1 else "🥉" if i == 2 else f"{i+1}."
        
        lines.append(
            f"{medal} **{model}**: {accuracy_pct:.1f}% "
            f"({stats['correct']}/{stats['total']} correct, "
            f"avg confidence: {stats['avg_confidence']:.2f})"
        )
    
    return "\n".join(lines)

def create_detailed_results_html(questions, results):
    """Create detailed HTML results for each question"""
    if not questions or not results:
        return "<p>No detailed results available</p>"
    
    html_parts = ["""
    <style>
    .question-card {
        background: white;
        border-radius: 12px;
        padding: 20px;
        margin-bottom: 20px;
        box-shadow: 0 2px 8px rgba(0,0,0,0.1);
        border-left: 5px solid #667eea;
    }
    .question-header {
        display: flex;
        justify-content: space-between;
        align-items: center;
        margin-bottom: 15px;
    }
    .question-number {
        background: linear-gradient(135deg, #667eea, #764ba2);
        color: white;
        padding: 6px 12px;
        border-radius: 20px;
        font-weight: bold;
        font-size: 14px;
    }
    .question-text {
        font-weight: 600;
        font-size: 16px;
        margin: 15px 0;
        color: #2d3748;
    }
    .choices {
        background: #f8fafc;
        border-radius: 8px;
        padding: 15px;
        margin: 10px 0;
    }
    .choice {
        margin: 8px 0;
        color: #4a5568;
    }
    .correct-answer {
        background: linear-gradient(135deg, #c6f6d5, #9ae6b4);
        border-left: 4px solid #48bb78;
        border-radius: 6px;
        padding: 12px;
        margin: 10px 0;
        font-weight: 600;
        color: #22543d;
    }
    .model-results {
        display: grid;
        grid-template-columns: repeat(auto-fit, minmax(220px, 1fr));
        gap: 12px;
        margin-top: 15px;
    }
    .model-result {
        padding: 12px;
        border-radius: 8px;
        text-align: center;
        font-weight: 600;
        transition: transform 0.2s ease;
    }
    .model-result:hover {
        transform: scale(1.02);
    }
    .result-correct {
        background: linear-gradient(135deg, #c6f6d5, #9ae6b4);
        color: #22543d;
        border: 2px solid #48bb78;
    }
    .result-incorrect {
        background: linear-gradient(135deg, #fed7d7, #fca5a5);
        color: #742a2a;
        border: 2px solid #e53e3e;
    }
    .result-error {
        background: linear-gradient(135deg, #fbb6ce, #f687b3);
        color: #744210;
        border: 2px solid #d69e2e;
    }
    .raw-response {
        font-size: 10px;
        margin-top: 4px;
        opacity: 0.7;
        font-family: monospace;
    }
    </style>
    """]
    
    for q_idx, question in enumerate(questions):
        html_parts.append(f"""
        <div class="question-card">
            <div class="question-header">
                <span class="question-number">Q{q_idx + 1}</span>
            </div>
            <div class="question-text">{question['question']}</div>
            <div class="choices">
                <strong>Choices:</strong><br>
                {' | '.join(f'{chr(65+i)}) {choice}' for i, choice in enumerate(question['choices']))}
            </div>
            <div class="correct-answer">
                <strong>✓ Correct Answer:</strong> {question['correct_answer']}
            </div>
            <div class="model-results">
        """)
        
        # Add results for each model
        for model, model_results in results.items():
            if q_idx < len(model_results):
                result = model_results[q_idx]
                
                if 'error' in result:
                    html_parts.append(f"""
                    <div class="model-result result-error">
                        <div>⚠️ {model}</div>
                        <div style="font-size: 12px; margin-top: 4px;">
                            Error occurred
                        </div>
                        <div class="raw-response">{result.get('raw_response', 'Unknown error')}</div>
                    </div>
                    """)
                else:
                    result_class = 'result-correct' if result.get('correct', False) else 'result-incorrect'
                    icon = '✅' if result.get('correct', False) else '❌'
                    
                    html_parts.append(f"""
                    <div class="model-result {result_class}">
                        <div>{icon} {model}</div>
                        <div style="font-size: 12px; margin-top: 4px;">
                            "{result.get('predicted', 'No prediction')}"
                        </div>
                        <div class="raw-response">Raw: "{result.get('raw_response', '')}"</div>
                    </div>
                    """)
        
        html_parts.append("""
            </div>
        </div>
        """)
    
    return "".join(html_parts)

def create_accuracy_chart(summary_stats):
    """Create accuracy comparison chart"""
    if not summary_stats:
        return None
    
    models = []
    accuracies = []
    
    for model, stats in summary_stats.items():
        if 'error' not in stats:
            models.append(model)
            accuracies.append(stats['accuracy'] * 100)
    
    if not models:
        return None
    
    fig = go.Figure(data=[
        go.Bar(
            x=models,
            y=accuracies,
            marker_color='lightblue',
            text=[f'{acc:.1f}%' for acc in accuracies],
            textposition='auto',
        )
    ])
    
    fig.update_layout(
        title="Model Accuracy Comparison",
        xaxis_title="Models",
        yaxis_title="Accuracy (%)",
        template="plotly_white",
        showlegend=False
    )
    
    return fig

def create_confidence_chart(results):
    """Create confidence distribution chart"""
    if not results:
        return None
    
    data = []
    for model, model_results in results.items():
        for result in model_results:
            if 'error' not in result and 'confidence' in result:
                data.append({
                    'Model': model,
                    'Confidence': result['confidence'],
                    'Correct': 'Correct' if result.get('correct', False) else 'Incorrect'
                })
    
    if not data:
        return None
    
    df = pd.DataFrame(data)
    
    fig = px.box(
        df,
        x='Model',
        y='Confidence',
        color='Correct',
        title="Confidence Distribution by Model and Correctness",
        template="plotly_white"
    )
    
    return fig

# Sample datasets for quick testing
SAMPLE_DATASETS = {
    "Custom (enter below)": "",
    "LP": """Question,Correct Answer,Choice1,Choice2,Choice3
    In which country is Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch located?	Wales	Germany	France	Scotland
In which country is Llanfair pwllgwyngyll located?	Wales	Germany	France	Scotland
In which country is Llanfair PG located?	Wales	Germany	France	Scotland""",
    "Simple Math": """Question,Correct Answer,Choice1,Choice2,Choice3
What is 2+2?,4,3,2,5
What is 5*3?,15,12,16,18
What is 10-7?,3,7,4,2
What is 8/2?,4,3,2,5""",
    
    "World Capitals": """Question,Correct Answer,Choice1,Choice2,Choice3
What is the capital of France?,Paris,London,Berlin,Rome
What is the capital of Japan?,Tokyo,Seoul,Beijing,Bangkok
What is the capital of Brazil?,Brasília,Rio de Janeiro,São Paulo,Salvador
What is the capital of Australia?,Canberra,Sydney,Melbourne,Perth""",
    
    "Science Quiz": """Question,Correct Answer,Choice1,Choice2,Choice3
What is the chemical symbol for gold?,Au,Ag,Ca,K
Which planet is closest to the Sun?,Mercury,Venus,Earth,Mars
What is the speed of light?,299792458 m/s,300000000 m/s,2992458 m/s,299000000 m/s
What gas do plants absorb from the atmosphere?,Carbon dioxide,Oxygen,Nitrogen,Hydrogen"""
}

# Custom CSS
css = """
.gradio-container {
    font-family: 'Inter', sans-serif;
}
.sample-text {
    font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;
    font-size: 12px;
}
"""

# Create Gradio interface
with gr.Blocks(title="🤖 Model Performance Comparison", theme=gr.themes.Soft(), css=css) as demo:
    gr.Markdown("""
    # 🤖 Model Performance Comparison Tool
    
    Compare LLM performance on multiple-choice questions using Hugging Face models.
    
    **Format**: Each line should have: `Question,Correct Answer,Choice1,Choice2,Choice3`
    
    💡 **Features**:
    - Model evaluation using HuggingFace transformers
    - Support for custom models via HF model paths
    - Detailed question-by-question results
    - Performance charts and statistics
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            # Sample dataset selector
            sample_selector = gr.Dropdown(
                choices=list(SAMPLE_DATASETS.keys()),
                value="Custom (enter below)",
                label="Choose sample dataset or enter your own",
                interactive=True
            )
            
            # Dataset input
            dataset_input = gr.Textbox(
                label="Dataset (CSV/TSV format)",
                placeholder="""Enter your dataset here...

Example format:
Question,Correct Answer,Choice1,Choice2,Choice3
What is 2+2?,4,3,2,5
What is the capital of France?,Paris,London,Berlin,Paris""",
                lines=8,
                max_lines=15
            )
            
            gr.Markdown("""
            **Format Requirements**:
            - First line: header (will be ignored), leave empty if no header
            - Each data line: Question, Correct Answer, Choice1, Choice2, Choice3
            - Use commas or tabs as separators
            """)
        
        with gr.Column(scale=1):
            # Model selection
            with gr.Tabs():
                with gr.TabItem("🤖 Predefined Models"):
                    predefined_selector = gr.CheckboxGroup(
                        choices=PREDEFINED_MODELS,
                        value=[PREDEFINED_MODELS[0]],
                        label="Select from popular models",
                        interactive=True
                    )
                
                with gr.TabItem("➕ Custom Models"):
                    custom_models_input = gr.Textbox(
                        label="Custom HuggingFace Model Paths",
                        placeholder="""Enter HuggingFace model paths (one per line):

microsoft/DialoGPT-medium
bigscience/bloom-560m""",
                        lines=5,
                        info="Add any HuggingFace model path. One model per line.",
                    )
                    
                    gr.Markdown("""
                    **Examples of valid model paths**:
                    - `microsoft/DialoGPT-medium`
                    - `bigscience/bloom-560m`
                    - `facebook/opt-350m`
                    - Your own fine-tuned models!
                    """)
            
            # Evaluate button
            evaluate_btn = gr.Button(
                "⚡ Run Evaluation", 
                variant="primary",
                scale=1
            )
            
            gr.Markdown("""
            **⚠️ Note**: 
            - Larger models require more GPU memory, currently we only run on CPU
            - First run will download models (may take time)
            - Models are cached for subsequent runs
            """)
    
    # Results section
    with gr.Column(visible=True) as results_section:
        gr.Markdown("## 📊 Results")
        
        summary_output = gr.Markdown(
            value="Results will appear here...",
            label="Performance Summary"
        )
        
        with gr.Row():
            accuracy_plot = gr.Plot(label="Accuracy Comparison")
            confidence_plot = gr.Plot(label="Confidence Analysis")
        
        detailed_results = gr.HTML(
            value="<p>Detailed results will appear here...</p>",
            label="Detailed Question-by-Question Results"
        )
    
    # Event handlers
    def update_dataset_from_sample(sample_name):
        if sample_name in SAMPLE_DATASETS:
            return gr.update(value=SAMPLE_DATASETS[sample_name])
        return gr.update()
    
    sample_selector.change(
        fn=update_dataset_from_sample,
        inputs=sample_selector,
        outputs=dataset_input
    )
    
    evaluate_btn.click(
        fn=run_evaluation,
        inputs=[dataset_input, predefined_selector, custom_models_input],
        outputs=[summary_output, detailed_results, accuracy_plot, confidence_plot, results_section]
    )
    
    gr.Markdown("""
    ---
    ### About Model Evaluation
    
    This tool loads and runs HuggingFace models for evaluation:
    
    **🏗️ How it works**:
    - Downloads models from HuggingFace Hub
    - Formats questions as prompts for each model
    - Runs likelihood based evaluation
    
    **⚡ Performance Tips**:
    - Use smaller models for testing
    - Larger models (7B+) require significant GPU memory
    - Models are cached after first load
    
    **🔧 Supported Models**:
    - Any HuggingFace autoregressive language model
    - Both instruction-tuned and base models
    - Custom fine-tuned models via HF paths
    """)

if __name__ == "__main__":
    demo.launch()