Spaces:
Sleeping
Sleeping
File size: 27,948 Bytes
7ebe82f cb0e70e 7ebe82f cb0e70e 7ebe82f aebf6ac 7ebe82f aebf6ac 7ebe82f aebf6ac 7ebe82f aebf6ac 7ebe82f aebf6ac 7ebe82f aebf6ac 7ebe82f aebf6ac 7ebe82f aebf6ac 7ebe82f aebf6ac 7ebe82f aebf6ac 7ebe82f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 |
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from collections import Counter
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
import logging
from typing import List, Dict, Any
import gc
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configurations - maps display names to HF model paths
PREDEFINED_MODELS = [
"meta-llama/Llama-3.2-1B",
"google/gemma-2-2b",
"Qwen/Qwen3-0.6B",
"Qwen/Qwen2.5-0.5B",
"Qwen/Qwen2.5-1.5B",
"bigscience/bloom-560m",
"CohereForAI/aya-expanse-8b",
"common-pile/comma-v0.1-2t",
"google/byt5-small",
"google/byt5-small",
"gsaltintas/supertoken_models-llama_gpt2",
]
# Global cache for loaded models
model_cache = {}
def parse_dataset(text):
"""Parse the input dataset text into structured questions"""
if not text.strip():
return [], "Please enter your dataset"
lines = text.strip().split('\n')
if len(lines) < 2:
return [], "Dataset must have at least a header and one question"
# Skip header and detect delimiter
first_data_line = lines[1] if len(lines) > 1 else lines[0]
delimiter = '\t' if '\t' in first_data_line else ','
questions = []
errors = []
for i, line in enumerate(lines[1:], 2): # Start from line 2 (after header)
line = line.strip()
if not line:
continue
parts = [part.strip().strip('"') for part in line.split(delimiter)]
if len(parts) < 5:
errors.append(f"Line {i}: Not enough columns (need 5, got {len(parts)})")
continue
question = {
'question': parts[0],
'correct_answer': parts[1],
'choices': [parts[2], parts[3], parts[4]]
}
# Ensure correct answer is in choices
if question['correct_answer'] not in question['choices']:
question['choices'].append(question['correct_answer'])
questions.append(question)
error_msg = '\n'.join(errors) if errors else ""
return questions, error_msg
def setup_tokenizer(model_path):
tokenizer_name = model_path
if "supertoken" in model_path:
from huggingface_hub import list_repo_files, hf_hub_download
import json
files = list_repo_files(model_path)
if "tokenizer_config.json" in files:
tokenizer_path = hf_hub_download(repo_id=model_path, filename="tokenizer_config.json")
with open(tokenizer_path) as f:
tok_config = json.load(f)["data"]["tokenizer"]
if tok_config["name"] == "huggingface":
tokenizer_name = tok_config["path"]
# todo: tiktoken
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=True, legacy=True)
return tokenizer
def load_model_and_tokenizer(model_path, use_cache=True, progress_callback=None):
"""Load model and tokenizer with caching"""
global model_cache
if use_cache and model_path in model_cache:
logger.info(f"Using cached model: {model_path}")
if progress_callback:
progress_callback(1.0, f"✅ Using cached model: {model_path}")
return model_cache[model_path]
try:
if progress_callback:
progress_callback(0.1, f"🔄 Starting to load model: {model_path}")
logger.info(f"Loading model: {model_path}")
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
if progress_callback:
progress_callback(0.2, f"📥 Loading tokenizer for {model_path}...")
# Load tokenizer
tokenizer = setup_tokenizer(model_path)
# Add pad token if missing
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if progress_callback:
progress_callback(0.5, f"🧠 Loading model weights for {model_path}... (this may take a while)")
# Load model with appropriate settings
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device_map="auto" if device== "cuda" else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
model_info = {
'tokenizer': tokenizer,
'model': model,
'device': device
}
if use_cache:
model_cache[model_path] = model_info
if progress_callback:
progress_callback(1.0, f"✅ Successfully loaded model: {model_path}")
return model_info
except Exception as e:
import code
error_msg = f"❌ Error loading model {model_path}: {str(e)}"
logger.error(error_msg)
# code.interact(local=dict(globals(), **locals()))
if progress_callback:
progress_callback(0.0, error_msg)
return None
def calculate_choice_likelihood(model, tokenizer, question, choice):
"""Calculate the log-likelihood of the choice given the question prompt"""
try:
prompt = f"Question: {question}\nAnswer: "
prompt=question
full_text = f"{prompt} {choice}"
# Tokenize full input (prompt + answer)
input_ids = tokenizer.encode(full_text, return_tensors="pt", add_special_tokens=False).to(model.device)
prompt_ids = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False).to(model.device)
if input_ids.size(1) <= prompt_ids.size(1):
logger.warning("Answer tokens are empty after tokenization.")
return float("-inf")
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits
# Get logits for the answer tokens only
answer_len = input_ids.size(1) - prompt_ids.size(1)
target_ids = input_ids[:, -answer_len:]
logits = logits[:, prompt_ids.size(1)-1:-1, :] # shifted for next-token prediction
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
token_log_probs = log_probs.gather(2, target_ids.unsqueeze(-1)).squeeze(-1)
total_log_prob = token_log_probs.sum().item()
return total_log_prob
except Exception as e:
logger.error(f"Error calculating likelihood for choice '{choice}': {str(e)}")
return float("-inf")
def evaluate_model_on_questions(model_path, questions, progress_callback=None):
"""Evaluate a single model on all questions using likelihood-based scoring"""
model_info = load_model_and_tokenizer(model_path, progress_callback=progress_callback)
if model_info is None:
return [{'error': f'Failed to load model {model_path}'}] * len(questions)
results = []
model = model_info['model']
tokenizer = model_info['tokenizer']
for i, question in enumerate(questions):
try:
# Calculate likelihood for each choice
choice_likelihoods = {}
choice_probs = {}
for choice in question['choices']:
likelihood = calculate_choice_likelihood(model, tokenizer, question['question'], choice)
choice_likelihoods[choice] = likelihood
# Convert log probabilities to probabilities for confidence scoring
max_log_prob = max(choice_likelihoods.values())
choice_probs = {choice: torch.exp(torch.tensor(log_prob - max_log_prob)).item()
for choice, log_prob in choice_likelihoods.items()}
# Normalize probabilities
total_prob = sum(choice_probs.values())
if total_prob > 0:
choice_probs = {choice: prob / total_prob for choice, prob in choice_probs.items()}
# Select the choice with highest likelihood
predicted_choice = max(choice_likelihoods.keys(), key=lambda x: choice_likelihoods[x])
is_correct = predicted_choice == question['correct_answer']
# Confidence is the probability of the selected choice
confidence = choice_probs.get(predicted_choice, 0.0)
results.append({
'question_idx': i,
'predicted': predicted_choice,
'correct': is_correct,
'confidence': confidence,
'choice_likelihoods': choice_likelihoods,
'choice_probabilities': choice_probs,
'raw_response': f"Likelihoods: {choice_likelihoods}"
})
if progress_callback:
# Use remaining 80% for evaluation progress
evaluation_progress = 0.2 + (i + 1) / len(questions) * 0.8
progress_callback(evaluation_progress, f"🔍 Evaluating {model_path}: {i+1}/{len(questions)} questions (likelihood-based)")
except Exception as e:
logger.error(f"Error evaluating question {i} with {model_path}: {str(e)}")
results.append({
'question_idx': i,
'predicted': question['choices'][0] if question['choices'] else '',
'correct': False,
'confidence': 0.0,
'choice_likelihoods': {},
'choice_probabilities': {},
'raw_response': f"Error: {str(e)}"
})
return results
def run_evaluation(dataset_text, selected_predefined, custom_models_text="", progress=gr.Progress()):
"""Main evaluation function"""
if not dataset_text.strip():
return (
"Please enter your dataset",
"<p>No data provided</p>",
None,
None,
gr.update(visible=True)
)
# Parse custom models
custom_models = []
if custom_models_text is None:
custom_models_text = ""
if custom_models_text.strip():
custom_models = [model.strip() for model in custom_models_text.strip().split('\n') if model.strip()]
# Combine selected models
all_models = []
# Add predefined models
all_models.extend(selected_predefined)
all_models.extend(custom_models)
if not all_models:
return (
"Please select at least one model or add custom models",
"<p>No models selected</p>",
None,
None,
gr.update(visible=False)
)
# Parse dataset
questions, parse_error = parse_dataset(dataset_text)
if parse_error:
return (
f"Dataset parsing error:\n{parse_error}",
"<p>Failed to parse dataset</p>",
None,
None,
gr.update(visible=True)
)
if not questions:
return (
"No valid questions found in dataset",
"<p>No questions to evaluate</p>",
None,
None,
gr.update(visible=True)
)
# Run evaluation
progress(0, "Starting evaluation...")
results = {}
total_steps = len(all_models) * len(questions)
current_step = 0
summary_md = create_summary_markdown({})
for model_path in all_models:
display_name = model_path.split('/')[-1] if '/' in model_path else model_path
try:
def model_progress(p, msg):
nonlocal current_step
current_step = int(p * len(questions))
overall_progress = current_step / total_steps
progress(overall_progress, msg)
model_results = evaluate_model_on_questions(model_path, questions, model_progress)
results[display_name] = model_results
except Exception as e:
logger.error(f"Failed to evaluate {display_name}: {str(e)}")
results[display_name] = [{'error': str(e)}] * len(questions)
# Clean up GPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Generate outputs
summary_stats = generate_summary_stats(questions, results)
summary_md = create_summary_markdown(summary_stats)
detailed_html = create_detailed_results_html(questions, results)
accuracy_chart = create_accuracy_chart(summary_stats)
confidence_chart = create_confidence_chart(results)
return (
summary_md,
detailed_html,
accuracy_chart,
confidence_chart,
gr.update(visible=True)
)
def generate_summary_stats(questions, results):
"""Generate summary statistics for all models"""
summary = {}
for model, model_results in results.items():
if not model_results or 'error' in model_results[0]:
summary[model] = {
'accuracy': 0.0,
'correct': 0,
'total': len(questions),
'avg_confidence': 0.0,
'error': model_results[0].get('error', 'Unknown error') if model_results else 'No results'
}
continue
correct_count = sum(1 for r in model_results if r.get('correct', False))
total_count = len(model_results)
accuracy = correct_count / total_count if total_count > 0 else 0
# Calculate average confidence
avg_confidence = sum(r.get('confidence', 0) for r in model_results) / total_count if total_count > 0 else 0
summary[model] = {
'accuracy': accuracy,
'correct': correct_count,
'total': total_count,
'avg_confidence': avg_confidence
}
return summary
def create_summary_markdown(summary_stats):
"""Create markdown summary of results"""
if not summary_stats:
return "No results available"
# Sort by accuracy
sorted_models = sorted(summary_stats.items(), key=lambda x: x[1]['accuracy'], reverse=True)
lines = ["## 🏆 Model Performance Summary\n"]
for i, (model, stats) in enumerate(sorted_models):
if 'error' in stats:
lines.append(f"❌ **{model}**: Error - {stats['error']}")
continue
accuracy_pct = stats['accuracy'] * 100
medal = "🥇" if i == 0 else "🥈" if i == 1 else "🥉" if i == 2 else f"{i+1}."
lines.append(
f"{medal} **{model}**: {accuracy_pct:.1f}% "
f"({stats['correct']}/{stats['total']} correct, "
f"avg confidence: {stats['avg_confidence']:.2f})"
)
return "\n".join(lines)
def create_detailed_results_html(questions, results):
"""Create detailed HTML results for each question"""
if not questions or not results:
return "<p>No detailed results available</p>"
html_parts = ["""
<style>
.question-card {
background: white;
border-radius: 12px;
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
border-left: 5px solid #667eea;
}
.question-header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 15px;
}
.question-number {
background: linear-gradient(135deg, #667eea, #764ba2);
color: white;
padding: 6px 12px;
border-radius: 20px;
font-weight: bold;
font-size: 14px;
}
.question-text {
font-weight: 600;
font-size: 16px;
margin: 15px 0;
color: #2d3748;
}
.choices {
background: #f8fafc;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.choice {
margin: 8px 0;
color: #4a5568;
}
.correct-answer {
background: linear-gradient(135deg, #c6f6d5, #9ae6b4);
border-left: 4px solid #48bb78;
border-radius: 6px;
padding: 12px;
margin: 10px 0;
font-weight: 600;
color: #22543d;
}
.model-results {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(220px, 1fr));
gap: 12px;
margin-top: 15px;
}
.model-result {
padding: 12px;
border-radius: 8px;
text-align: center;
font-weight: 600;
transition: transform 0.2s ease;
}
.model-result:hover {
transform: scale(1.02);
}
.result-correct {
background: linear-gradient(135deg, #c6f6d5, #9ae6b4);
color: #22543d;
border: 2px solid #48bb78;
}
.result-incorrect {
background: linear-gradient(135deg, #fed7d7, #fca5a5);
color: #742a2a;
border: 2px solid #e53e3e;
}
.result-error {
background: linear-gradient(135deg, #fbb6ce, #f687b3);
color: #744210;
border: 2px solid #d69e2e;
}
.raw-response {
font-size: 10px;
margin-top: 4px;
opacity: 0.7;
font-family: monospace;
}
</style>
"""]
for q_idx, question in enumerate(questions):
html_parts.append(f"""
<div class="question-card">
<div class="question-header">
<span class="question-number">Q{q_idx + 1}</span>
</div>
<div class="question-text">{question['question']}</div>
<div class="choices">
<strong>Choices:</strong><br>
{' | '.join(f'{chr(65+i)}) {choice}' for i, choice in enumerate(question['choices']))}
</div>
<div class="correct-answer">
<strong>✓ Correct Answer:</strong> {question['correct_answer']}
</div>
<div class="model-results">
""")
# Add results for each model
for model, model_results in results.items():
if q_idx < len(model_results):
result = model_results[q_idx]
if 'error' in result:
html_parts.append(f"""
<div class="model-result result-error">
<div>⚠️ {model}</div>
<div style="font-size: 12px; margin-top: 4px;">
Error occurred
</div>
<div class="raw-response">{result.get('raw_response', 'Unknown error')}</div>
</div>
""")
else:
result_class = 'result-correct' if result.get('correct', False) else 'result-incorrect'
icon = '✅' if result.get('correct', False) else '❌'
html_parts.append(f"""
<div class="model-result {result_class}">
<div>{icon} {model}</div>
<div style="font-size: 12px; margin-top: 4px;">
"{result.get('predicted', 'No prediction')}"
</div>
<div class="raw-response">Raw: "{result.get('raw_response', '')}"</div>
</div>
""")
html_parts.append("""
</div>
</div>
""")
return "".join(html_parts)
def create_accuracy_chart(summary_stats):
"""Create accuracy comparison chart"""
if not summary_stats:
return None
models = []
accuracies = []
for model, stats in summary_stats.items():
if 'error' not in stats:
models.append(model)
accuracies.append(stats['accuracy'] * 100)
if not models:
return None
fig = go.Figure(data=[
go.Bar(
x=models,
y=accuracies,
marker_color='lightblue',
text=[f'{acc:.1f}%' for acc in accuracies],
textposition='auto',
)
])
fig.update_layout(
title="Model Accuracy Comparison",
xaxis_title="Models",
yaxis_title="Accuracy (%)",
template="plotly_white",
showlegend=False
)
return fig
def create_confidence_chart(results):
"""Create confidence distribution chart"""
if not results:
return None
data = []
for model, model_results in results.items():
for result in model_results:
if 'error' not in result and 'confidence' in result:
data.append({
'Model': model,
'Confidence': result['confidence'],
'Correct': 'Correct' if result.get('correct', False) else 'Incorrect'
})
if not data:
return None
df = pd.DataFrame(data)
fig = px.box(
df,
x='Model',
y='Confidence',
color='Correct',
title="Confidence Distribution by Model and Correctness",
template="plotly_white"
)
return fig
# Sample datasets for quick testing
SAMPLE_DATASETS = {
"Custom (enter below)": "",
"LP": """Question,Correct Answer,Choice1,Choice2,Choice3
In which country is Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch located? Wales Germany France Scotland
In which country is Llanfair pwllgwyngyll located? Wales Germany France Scotland
In which country is Llanfair PG located? Wales Germany France Scotland""",
"Simple Math": """Question,Correct Answer,Choice1,Choice2,Choice3
What is 2+2?,4,3,2,5
What is 5*3?,15,12,16,18
What is 10-7?,3,7,4,2
What is 8/2?,4,3,2,5""",
"World Capitals": """Question,Correct Answer,Choice1,Choice2,Choice3
What is the capital of France?,Paris,London,Berlin,Rome
What is the capital of Japan?,Tokyo,Seoul,Beijing,Bangkok
What is the capital of Brazil?,Brasília,Rio de Janeiro,São Paulo,Salvador
What is the capital of Australia?,Canberra,Sydney,Melbourne,Perth""",
"Science Quiz": """Question,Correct Answer,Choice1,Choice2,Choice3
What is the chemical symbol for gold?,Au,Ag,Ca,K
Which planet is closest to the Sun?,Mercury,Venus,Earth,Mars
What is the speed of light?,299792458 m/s,300000000 m/s,2992458 m/s,299000000 m/s
What gas do plants absorb from the atmosphere?,Carbon dioxide,Oxygen,Nitrogen,Hydrogen"""
}
# Custom CSS
css = """
.gradio-container {
font-family: 'Inter', sans-serif;
}
.sample-text {
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;
font-size: 12px;
}
"""
# Create Gradio interface
with gr.Blocks(title="🤖 Model Performance Comparison", theme=gr.themes.Soft(), css=css) as demo:
gr.Markdown("""
# 🤖 Model Performance Comparison Tool
Compare LLM performance on multiple-choice questions using Hugging Face models.
**Format**: Each line should have: `Question,Correct Answer,Choice1,Choice2,Choice3`
💡 **Features**:
- Model evaluation using HuggingFace transformers
- Support for custom models via HF model paths
- Detailed question-by-question results
- Performance charts and statistics
""")
with gr.Row():
with gr.Column(scale=2):
# Sample dataset selector
sample_selector = gr.Dropdown(
choices=list(SAMPLE_DATASETS.keys()),
value="Custom (enter below)",
label="Choose sample dataset or enter your own",
interactive=True
)
# Dataset input
dataset_input = gr.Textbox(
label="Dataset (CSV/TSV format)",
placeholder="""Enter your dataset here...
Example format:
Question,Correct Answer,Choice1,Choice2,Choice3
What is 2+2?,4,3,2,5
What is the capital of France?,Paris,London,Berlin,Paris""",
lines=8,
max_lines=15
)
gr.Markdown("""
**Format Requirements**:
- First line: header (will be ignored), leave empty if no header
- Each data line: Question, Correct Answer, Choice1, Choice2, Choice3
- Use commas or tabs as separators
""")
with gr.Column(scale=1):
# Model selection
with gr.Tabs():
with gr.TabItem("🤖 Predefined Models"):
predefined_selector = gr.CheckboxGroup(
choices=PREDEFINED_MODELS,
value=[PREDEFINED_MODELS[0]],
label="Select from popular models",
interactive=True
)
with gr.TabItem("➕ Custom Models"):
custom_models_input = gr.Textbox(
label="Custom HuggingFace Model Paths",
placeholder="""Enter HuggingFace model paths (one per line):
microsoft/DialoGPT-medium
bigscience/bloom-560m""",
lines=5,
info="Add any HuggingFace model path. One model per line.",
)
gr.Markdown("""
**Examples of valid model paths**:
- `microsoft/DialoGPT-medium`
- `bigscience/bloom-560m`
- `facebook/opt-350m`
- Your own fine-tuned models!
""")
# Evaluate button
evaluate_btn = gr.Button(
"⚡ Run Evaluation",
variant="primary",
scale=1
)
gr.Markdown("""
**⚠️ Note**:
- Larger models require more GPU memory, currently we only run on CPU
- First run will download models (may take time)
- Models are cached for subsequent runs
""")
# Results section
with gr.Column(visible=True) as results_section:
gr.Markdown("## 📊 Results")
summary_output = gr.Markdown(
value="Results will appear here...",
label="Performance Summary"
)
with gr.Row():
accuracy_plot = gr.Plot(label="Accuracy Comparison")
confidence_plot = gr.Plot(label="Confidence Analysis")
detailed_results = gr.HTML(
value="<p>Detailed results will appear here...</p>",
label="Detailed Question-by-Question Results"
)
# Event handlers
def update_dataset_from_sample(sample_name):
if sample_name in SAMPLE_DATASETS:
return gr.update(value=SAMPLE_DATASETS[sample_name])
return gr.update()
sample_selector.change(
fn=update_dataset_from_sample,
inputs=sample_selector,
outputs=dataset_input
)
evaluate_btn.click(
fn=run_evaluation,
inputs=[dataset_input, predefined_selector, custom_models_input],
outputs=[summary_output, detailed_results, accuracy_plot, confidence_plot, results_section]
)
gr.Markdown("""
---
### About Model Evaluation
This tool loads and runs HuggingFace models for evaluation:
**🏗️ How it works**:
- Downloads models from HuggingFace Hub
- Formats questions as prompts for each model
- Runs likelihood based evaluation
**⚡ Performance Tips**:
- Use smaller models for testing
- Larger models (7B+) require significant GPU memory
- Models are cached after first load
**🔧 Supported Models**:
- Any HuggingFace autoregressive language model
- Both instruction-tuned and base models
- Custom fine-tuned models via HF paths
""")
if __name__ == "__main__":
demo.launch() |