Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- README.md +1 -3
- app.py +152 -143
- pre-requirements.txt +2 -0
- requirements.txt +16 -2
README.md
CHANGED
@@ -4,11 +4,9 @@ emoji: 🏃
|
|
4 |
colorFrom: purple
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
short_description: Vocal and background audio separator
|
12 |
---
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
4 |
colorFrom: purple
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.43.1
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
short_description: Vocal and background audio separator
|
12 |
---
|
|
|
|
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
os.system("pip install ort-nightly-gpu --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple/")
|
4 |
import gc
|
5 |
import hashlib
|
6 |
import queue
|
@@ -20,25 +19,39 @@ from utils import (
|
|
20 |
download_manager,
|
21 |
)
|
22 |
import random
|
23 |
-
import spaces
|
24 |
from utils import logger
|
25 |
import onnxruntime as ort
|
26 |
import warnings
|
27 |
-
import spaces
|
28 |
import gradio as gr
|
29 |
-
import logging
|
30 |
import time
|
31 |
import traceback
|
32 |
from pedalboard import Pedalboard, Reverb, Delay, Chorus, Compressor, Gain, HighpassFilter, LowpassFilter
|
33 |
from pedalboard.io import AudioFile
|
34 |
-
import
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
warnings.filterwarnings("ignore")
|
|
|
|
|
38 |
|
39 |
title = "<center><strong><font size='7'>Audio🔹separator</font></strong></center>"
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
|
43 |
stem_naming = {
|
44 |
"Vocals": "Instrumental",
|
@@ -350,7 +363,7 @@ class MDX:
|
|
350 |
return self.segment(processed_batches, True, chunk)
|
351 |
|
352 |
|
353 |
-
@spaces.GPU()
|
354 |
def run_mdx(
|
355 |
model_params,
|
356 |
output_dir,
|
@@ -372,6 +385,9 @@ def run_mdx(
|
|
372 |
device_properties = torch.cuda.get_device_properties(device)
|
373 |
vram_gb = device_properties.total_memory / 1024**3
|
374 |
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2)
|
|
|
|
|
|
|
375 |
logger.info(f"threads: {m_threads} vram: {vram_gb}")
|
376 |
else:
|
377 |
device = torch.device("cpu")
|
@@ -459,7 +475,9 @@ def run_mdx_beta(
|
|
459 |
|
460 |
m_threads = 1
|
461 |
duration = librosa.get_duration(filename=filename)
|
462 |
-
if
|
|
|
|
|
463 |
m_threads = 8
|
464 |
elif duration > 120:
|
465 |
m_threads = 16
|
@@ -580,10 +598,14 @@ def get_hash(filepath):
|
|
580 |
|
581 |
return file_hash.hexdigest()[:18]
|
582 |
|
|
|
583 |
def random_sleep():
|
584 |
-
sleep_time =
|
|
|
|
|
585 |
time.sleep(sleep_time)
|
586 |
|
|
|
587 |
def process_uvr_task(
|
588 |
orig_song_path: str = "aud_test.mp3",
|
589 |
main_vocals: bool = False,
|
@@ -653,16 +675,16 @@ def process_uvr_task(
|
|
653 |
device_base=device_base,
|
654 |
)
|
655 |
except Exception as e:
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
else:
|
667 |
backup_vocals_path, main_vocals_path = None, vocals_path
|
668 |
|
@@ -683,16 +705,16 @@ def process_uvr_task(
|
|
683 |
device_base=device_base,
|
684 |
)
|
685 |
except Exception as e:
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
else:
|
697 |
vocals_dereverb_path = main_vocals_path
|
698 |
|
@@ -719,12 +741,12 @@ def add_vocal_effects(input_file, output_file, reverb_room_size=0.6, vocal_rever
|
|
719 |
|
720 |
if delay_seconds > 0 or delay_mix > 0:
|
721 |
effects.append(Delay(delay_seconds=delay_seconds, mix=delay_mix))
|
722 |
-
print("delay applied")
|
723 |
# effects.append(Chorus())
|
724 |
|
725 |
if gain_db:
|
726 |
effects.append(Gain(gain_db=gain_db))
|
727 |
-
print("added gain db")
|
728 |
|
729 |
board = Pedalboard(effects)
|
730 |
|
@@ -765,99 +787,77 @@ def add_instrumental_effects(input_file, output_file, highpass_freq=100, lowpass
|
|
765 |
effected = board(chunk, f.samplerate, reset=False)
|
766 |
o.write(effected)
|
767 |
|
768 |
-
|
769 |
-
def sound_separate(media_file, stem, main, dereverb, vocal_effects=True, background_effects=True,
|
770 |
-
vocal_reverb_room_size=0.6, vocal_reverb_damping=0.6, vocal_reverb_wet_level=0.35,
|
771 |
-
vocal_delay_seconds=0.4, vocal_delay_mix=0.25,
|
772 |
-
vocal_compressor_threshold_db=-25, vocal_compressor_ratio=3.5, vocal_compressor_attack_ms=10, vocal_compressor_release_ms=60,
|
773 |
-
vocal_gain_db=4,
|
774 |
-
background_highpass_freq=120, background_lowpass_freq=11000,
|
775 |
-
background_reverb_room_size=0.5, background_reverb_damping=0.5, background_reverb_wet_level=0.25,
|
776 |
-
background_compressor_threshold_db=-20, background_compressor_ratio=2.5, background_compressor_attack_ms=15, background_compressor_release_ms=80,
|
777 |
-
background_gain_db=3):
|
778 |
-
if not media_file:
|
779 |
-
raise ValueError("The audio path is missing.")
|
780 |
|
781 |
-
|
782 |
-
raise ValueError("Please select 'vocal' or 'background' stem.")
|
783 |
|
784 |
-
hash_audio = str(get_hash(media_file))
|
785 |
-
media_dir = os.path.dirname(media_file)
|
786 |
|
787 |
-
|
|
|
|
|
|
|
|
|
788 |
|
789 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
790 |
|
791 |
-
|
792 |
-
try:
|
793 |
-
_, _, _, _, vocal_audio = process_uvr_task(
|
794 |
-
orig_song_path=media_file,
|
795 |
-
song_id=hash_audio + "mdx",
|
796 |
-
main_vocals=main,
|
797 |
-
dereverb=dereverb,
|
798 |
-
remove_files_output_dir=False,
|
799 |
-
)
|
800 |
|
801 |
-
if vocal_effects:
|
802 |
-
suffix = '_effects'
|
803 |
-
file_name, file_extension = os.path.splitext(vocal_audio)
|
804 |
-
out_effects = file_name + suffix + file_extension
|
805 |
-
out_effects_path = os.path.join(media_dir, out_effects)
|
806 |
-
add_vocal_effects(vocal_audio, out_effects_path,
|
807 |
-
reverb_room_size=vocal_reverb_room_size, reverb_damping=vocal_reverb_damping, reverb_wet_level=vocal_reverb_wet_level,
|
808 |
-
delay_seconds=vocal_delay_seconds, delay_mix=vocal_delay_mix,
|
809 |
-
compressor_threshold_db=vocal_compressor_threshold_db, compressor_ratio=vocal_compressor_ratio, compressor_attack_ms=vocal_compressor_attack_ms, compressor_release_ms=vocal_compressor_release_ms,
|
810 |
-
gain_db=vocal_gain_db
|
811 |
-
)
|
812 |
-
vocal_audio = out_effects_path
|
813 |
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
traceback.print_exc()
|
818 |
|
819 |
-
if
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
remove_files_output_dir=False,
|
825 |
-
)
|
826 |
|
827 |
-
|
828 |
-
|
829 |
-
file_name, file_extension = os.path.splitext(background_audio)
|
830 |
-
out_effects = file_name + suffix + file_extension
|
831 |
-
out_effects_path = os.path.join(media_dir, out_effects)
|
832 |
-
add_instrumental_effects(background_audio, out_effects_path,
|
833 |
-
highpass_freq=background_highpass_freq, lowpass_freq=background_lowpass_freq,
|
834 |
-
reverb_room_size=background_reverb_room_size, reverb_damping=background_reverb_damping, reverb_wet_level=background_reverb_wet_level,
|
835 |
-
compressor_threshold_db=background_compressor_threshold_db, compressor_ratio=background_compressor_ratio, compressor_attack_ms=background_compressor_attack_ms, compressor_release_ms=background_compressor_release_ms,
|
836 |
-
gain_db=background_gain_db
|
837 |
-
)
|
838 |
-
background_audio = out_effects_path
|
839 |
|
840 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
841 |
|
842 |
-
|
843 |
-
|
844 |
-
logger.info(f"Execution time: {execution_time} seconds")
|
845 |
|
846 |
-
|
847 |
-
|
|
|
848 |
|
849 |
-
|
850 |
|
|
|
851 |
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
|
|
|
|
|
|
861 |
):
|
862 |
if not media_file:
|
863 |
raise ValueError("The audio path is missing.")
|
@@ -875,10 +875,10 @@ def sound_separate(media_file, stem, main, dereverb, vocal_effects=True, backgro
|
|
875 |
print("Duration audio:", duration_base_)
|
876 |
except Exception as e:
|
877 |
print(e)
|
878 |
-
|
879 |
start_time = time.time()
|
880 |
|
881 |
-
if
|
882 |
try:
|
883 |
_, _, _, _, vocal_audio = process_uvr_task(
|
884 |
orig_song_path=media_file,
|
@@ -906,7 +906,7 @@ def sound_separate(media_file, stem, main, dereverb, vocal_effects=True, backgro
|
|
906 |
gr.Info(str(error))
|
907 |
logger.error(str(error))
|
908 |
|
909 |
-
if
|
910 |
background_audio, _ = process_uvr_task(
|
911 |
orig_song_path=media_file,
|
912 |
song_id=hash_audio + "voiceless",
|
@@ -919,7 +919,7 @@ def sound_separate(media_file, stem, main, dereverb, vocal_effects=True, backgro
|
|
919 |
file_name, file_extension = os.path.splitext(os.path.abspath(background_audio))
|
920 |
out_effects = file_name + suffix + file_extension
|
921 |
out_effects_path = os.path.join(media_dir, out_effects)
|
922 |
-
print(file_name, file_extension, out_effects, out_effects_path)
|
923 |
add_instrumental_effects(background_audio, out_effects_path,
|
924 |
highpass_freq=background_highpass_freq, lowpass_freq=background_lowpass_freq,
|
925 |
reverb_room_size=background_reverb_room_size, reverb_damping=background_reverb_damping, reverb_wet_level=background_reverb_wet_level,
|
@@ -937,7 +937,7 @@ def sound_separate(media_file, stem, main, dereverb, vocal_effects=True, backgro
|
|
937 |
if not outputs:
|
938 |
raise Exception("Error in sound separation.")
|
939 |
|
940 |
-
return outputs
|
941 |
|
942 |
|
943 |
def audio_downloader(
|
@@ -949,7 +949,12 @@ def audio_downloader(
|
|
949 |
if not url_media:
|
950 |
return None
|
951 |
|
952 |
-
|
|
|
|
|
|
|
|
|
|
|
953 |
|
954 |
dir_output_downloads = "downloads"
|
955 |
os.makedirs(dir_output_downloads, exist_ok=True)
|
@@ -1024,7 +1029,7 @@ def audio_conf():
|
|
1024 |
|
1025 |
|
1026 |
def stem_conf():
|
1027 |
-
return gr.
|
1028 |
choices=["vocal", "background"],
|
1029 |
value="vocal",
|
1030 |
label="Stem",
|
@@ -1314,23 +1319,29 @@ def output_conf():
|
|
1314 |
|
1315 |
|
1316 |
def show_vocal_components(value_name):
|
|
|
|
|
1317 |
|
1318 |
-
|
1319 |
-
|
1320 |
-
|
1321 |
-
|
1322 |
-
|
1323 |
-
|
1324 |
-
|
1325 |
-
|
1326 |
-
|
1327 |
-
|
1328 |
-
|
1329 |
-
|
|
|
|
|
|
|
|
|
1330 |
|
1331 |
|
1332 |
def get_gui(theme):
|
1333 |
-
with gr.Blocks(theme=theme) as app:
|
1334 |
gr.Markdown(title)
|
1335 |
gr.Markdown(description)
|
1336 |
|
@@ -1366,9 +1377,7 @@ def get_gui(theme):
|
|
1366 |
vocal_effects_gui = vocal_effects_conf()
|
1367 |
background_effects_gui = background_effects_conf()
|
1368 |
|
1369 |
-
|
1370 |
-
with gr.Accordion("Vocal Effects Parameters", open=False): # with gr.Row():
|
1371 |
-
# gr.Label("Vocal Effects Parameters")
|
1372 |
with gr.Row():
|
1373 |
vocal_reverb_room_size_gui = vocal_reverb_room_size_conf()
|
1374 |
vocal_reverb_damping_gui = vocal_reverb_damping_conf()
|
@@ -1382,8 +1391,7 @@ def get_gui(theme):
|
|
1382 |
vocal_compressor_release_ms_gui = vocal_compressor_release_ms_conf()
|
1383 |
vocal_gain_db_gui = vocal_gain_db_conf()
|
1384 |
|
1385 |
-
with gr.Accordion("Background Effects Parameters", open=False):
|
1386 |
-
# gr.Label("Background Effects Parameters")
|
1387 |
with gr.Row():
|
1388 |
background_highpass_freq_gui = background_highpass_freq_conf()
|
1389 |
background_lowpass_freq_gui = background_lowpass_freq_conf()
|
@@ -1402,6 +1410,7 @@ def get_gui(theme):
|
|
1402 |
[main_gui, dereverb_gui, vocal_effects_gui, background_effects_gui],
|
1403 |
)
|
1404 |
|
|
|
1405 |
button_base = button_conf()
|
1406 |
output_base = output_conf()
|
1407 |
|
@@ -1420,7 +1429,7 @@ def get_gui(theme):
|
|
1420 |
background_highpass_freq_gui, background_lowpass_freq_gui, background_reverb_room_size_gui,
|
1421 |
background_reverb_damping_gui, background_reverb_wet_level_gui, background_compressor_threshold_db_gui,
|
1422 |
background_compressor_ratio_gui, background_compressor_attack_ms_gui, background_compressor_release_ms_gui,
|
1423 |
-
background_gain_db_gui,
|
1424 |
],
|
1425 |
outputs=[output_base],
|
1426 |
)
|
@@ -1459,24 +1468,24 @@ def get_gui(theme):
|
|
1459 |
cache_examples=False,
|
1460 |
)
|
1461 |
|
|
|
|
|
1462 |
return app
|
1463 |
|
1464 |
|
1465 |
if __name__ == "__main__":
|
1466 |
-
|
1467 |
for id_model in UVR_MODELS:
|
1468 |
download_manager(
|
1469 |
os.path.join(MDX_DOWNLOAD_LINK, id_model), mdxnet_models_dir
|
1470 |
)
|
1471 |
|
1472 |
app = get_gui(theme)
|
1473 |
-
|
1474 |
app.queue(default_concurrency_limit=40)
|
1475 |
-
|
1476 |
app.launch(
|
1477 |
max_threads=40,
|
1478 |
-
share=
|
1479 |
show_error=True,
|
1480 |
quiet=False,
|
1481 |
-
debug=
|
|
|
1482 |
)
|
|
|
1 |
import os
|
2 |
+
import spaces
|
|
|
3 |
import gc
|
4 |
import hashlib
|
5 |
import queue
|
|
|
19 |
download_manager,
|
20 |
)
|
21 |
import random
|
|
|
22 |
from utils import logger
|
23 |
import onnxruntime as ort
|
24 |
import warnings
|
|
|
25 |
import gradio as gr
|
|
|
26 |
import time
|
27 |
import traceback
|
28 |
from pedalboard import Pedalboard, Reverb, Delay, Chorus, Compressor, Gain, HighpassFilter, LowpassFilter
|
29 |
from pedalboard.io import AudioFile
|
30 |
+
import argparse
|
31 |
+
|
32 |
+
parser = argparse.ArgumentParser(description="Run the app with optional sharing")
|
33 |
+
parser.add_argument(
|
34 |
+
'--share',
|
35 |
+
action='store_true',
|
36 |
+
help='Enable sharing mode'
|
37 |
+
)
|
38 |
+
parser.add_argument(
|
39 |
+
'--theme',
|
40 |
+
type=str,
|
41 |
+
default="NoCrypt/miku",
|
42 |
+
help='Set the theme (default: NoCrypt/miku)'
|
43 |
+
)
|
44 |
+
args = parser.parse_args()
|
45 |
|
46 |
warnings.filterwarnings("ignore")
|
47 |
+
IS_COLAB = True if ('google.colab' in sys.modules or args.share) else False
|
48 |
+
IS_ZERO_GPU = os.getenv("SPACES_ZERO_GPU")
|
49 |
|
50 |
title = "<center><strong><font size='7'>Audio🔹separator</font></strong></center>"
|
51 |
+
base_demo = "This demo uses the "
|
52 |
+
description = (f"{base_demo if IS_ZERO_GPU else ''}MDX-Net models for vocal and background sound separation.")
|
53 |
+
RESOURCES = "- You can also try `Audio🔹separator` in Colab’s free tier, which provides free GPU [link](https://github.com/R3gm/Audio_separator_ui?tab=readme-ov-file#audio-separator)."
|
54 |
+
theme = args.theme
|
55 |
|
56 |
stem_naming = {
|
57 |
"Vocals": "Instrumental",
|
|
|
363 |
return self.segment(processed_batches, True, chunk)
|
364 |
|
365 |
|
366 |
+
@spaces.GPU(duration=40)
|
367 |
def run_mdx(
|
368 |
model_params,
|
369 |
output_dir,
|
|
|
385 |
device_properties = torch.cuda.get_device_properties(device)
|
386 |
vram_gb = device_properties.total_memory / 1024**3
|
387 |
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2)
|
388 |
+
duration = librosa.get_duration(filename=filename)
|
389 |
+
if duration < 60:
|
390 |
+
m_threads = 1
|
391 |
logger.info(f"threads: {m_threads} vram: {vram_gb}")
|
392 |
else:
|
393 |
device = torch.device("cpu")
|
|
|
475 |
|
476 |
m_threads = 1
|
477 |
duration = librosa.get_duration(filename=filename)
|
478 |
+
if IS_COLAB or duration < 60:
|
479 |
+
m_threads = 1
|
480 |
+
elif duration >= 60 and duration <= 120:
|
481 |
m_threads = 8
|
482 |
elif duration > 120:
|
483 |
m_threads = 16
|
|
|
598 |
|
599 |
return file_hash.hexdigest()[:18]
|
600 |
|
601 |
+
|
602 |
def random_sleep():
|
603 |
+
sleep_time = 0.1
|
604 |
+
if IS_ZERO_GPU:
|
605 |
+
sleep_time = round(random.uniform(3.2, 5.9), 1)
|
606 |
time.sleep(sleep_time)
|
607 |
|
608 |
+
|
609 |
def process_uvr_task(
|
610 |
orig_song_path: str = "aud_test.mp3",
|
611 |
main_vocals: bool = False,
|
|
|
675 |
device_base=device_base,
|
676 |
)
|
677 |
except Exception as e:
|
678 |
+
backup_vocals_path, main_vocals_path = run_mdx_beta(
|
679 |
+
mdx_model_params,
|
680 |
+
song_output_dir,
|
681 |
+
os.path.join(mdxnet_models_dir, "UVR_MDXNET_KARA_2.onnx"),
|
682 |
+
vocals_path,
|
683 |
+
suffix="Backup",
|
684 |
+
invert_suffix="Main",
|
685 |
+
denoise=True,
|
686 |
+
device_base=device_base,
|
687 |
+
)
|
688 |
else:
|
689 |
backup_vocals_path, main_vocals_path = None, vocals_path
|
690 |
|
|
|
705 |
device_base=device_base,
|
706 |
)
|
707 |
except Exception as e:
|
708 |
+
_, vocals_dereverb_path = run_mdx_beta(
|
709 |
+
mdx_model_params,
|
710 |
+
song_output_dir,
|
711 |
+
os.path.join(mdxnet_models_dir, "Reverb_HQ_By_FoxJoy.onnx"),
|
712 |
+
main_vocals_path,
|
713 |
+
invert_suffix="DeReverb",
|
714 |
+
exclude_main=True,
|
715 |
+
denoise=True,
|
716 |
+
device_base=device_base,
|
717 |
+
)
|
718 |
else:
|
719 |
vocals_dereverb_path = main_vocals_path
|
720 |
|
|
|
741 |
|
742 |
if delay_seconds > 0 or delay_mix > 0:
|
743 |
effects.append(Delay(delay_seconds=delay_seconds, mix=delay_mix))
|
744 |
+
# print("delay applied")
|
745 |
# effects.append(Chorus())
|
746 |
|
747 |
if gain_db:
|
748 |
effects.append(Gain(gain_db=gain_db))
|
749 |
+
# print("added gain db")
|
750 |
|
751 |
board = Pedalboard(effects)
|
752 |
|
|
|
787 |
effected = board(chunk, f.samplerate, reset=False)
|
788 |
o.write(effected)
|
789 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
790 |
|
791 |
+
COMMON_SAMPLE_RATES = [8000, 16000, 22050, 32000, 44100, 48000, 96000]
|
|
|
792 |
|
|
|
|
|
793 |
|
794 |
+
def save_audio(audio_opt: np.ndarray, final_sr: int, output_audio_path: str, target_format: str) -> str:
|
795 |
+
"""
|
796 |
+
Save audio with automatic handling of unsupported sample rates for non-WAV formats.
|
797 |
+
"""
|
798 |
+
ext = os.path.splitext(output_audio_path)[1].lower()
|
799 |
|
800 |
+
try:
|
801 |
+
if ext == ".wav":
|
802 |
+
sf.write(output_audio_path, audio_opt, final_sr, format=target_format)
|
803 |
+
else:
|
804 |
+
target_sr = min(COMMON_SAMPLE_RATES, key=lambda altsr: abs(altsr - final_sr))
|
805 |
+
if target_sr != final_sr:
|
806 |
+
logger.warning(f"Resampling from {final_sr} -> {target_sr} for {ext}")
|
807 |
+
audio_opt = librosa.resample(audio_opt, orig_sr=final_sr, target_sr=target_sr)
|
808 |
+
sf.write(output_audio_path, audio_opt, target_sr, format=target_format)
|
809 |
+
except Exception as e:
|
810 |
+
logger.error(e)
|
811 |
+
logger.error(f"Error saving {output_audio_path}, performing fallback to WAV")
|
812 |
+
output_audio_path = output_audio_path.replace(f"_converted.{target_format}", ".wav")
|
813 |
|
814 |
+
return output_audio_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
815 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
816 |
|
817 |
+
def convert_format(file_paths, media_dir, target_format):
|
818 |
+
"""
|
819 |
+
Convert a list of audio files to the target format with automatic safe sample rates.
|
|
|
820 |
|
821 |
+
WAV files are returned as-is; non-WAV files are resampled if needed to a supported rate.
|
822 |
+
"""
|
823 |
+
target_format = target_format.lower()
|
824 |
+
if target_format == "wav":
|
825 |
+
return file_paths # No conversion needed for WAV
|
|
|
|
|
826 |
|
827 |
+
suffix = "_converted"
|
828 |
+
converted_files = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
829 |
|
830 |
+
for fp in file_paths:
|
831 |
+
# Absolute paths and base filename
|
832 |
+
abs_fp = os.path.abspath(fp)
|
833 |
+
file_name, _ = os.path.splitext(os.path.basename(abs_fp))
|
834 |
+
file_ext = f".{target_format}"
|
835 |
+
out_name = file_name + suffix + file_ext
|
836 |
+
out_path = os.path.join(media_dir, out_name)
|
837 |
|
838 |
+
# Load audio with librosa (handles many formats)
|
839 |
+
audio, sr = sf.read(abs_fp)
|
|
|
840 |
|
841 |
+
# Save using safe resampling
|
842 |
+
saved_path = save_audio(audio, sr, out_path, target_format)
|
843 |
+
converted_files.append(saved_path)
|
844 |
|
845 |
+
# print(f"Converted: {abs_fp} -> {saved_path}")
|
846 |
|
847 |
+
return converted_files
|
848 |
|
849 |
+
|
850 |
+
def sound_separate(
|
851 |
+
media_file, stem, main, dereverb, vocal_effects=True, background_effects=True,
|
852 |
+
vocal_reverb_room_size=0.6, vocal_reverb_damping=0.6, vocal_reverb_dryness=0.8, vocal_reverb_wet_level=0.35,
|
853 |
+
vocal_delay_seconds=0.4, vocal_delay_mix=0.25,
|
854 |
+
vocal_compressor_threshold_db=-25, vocal_compressor_ratio=3.5, vocal_compressor_attack_ms=10, vocal_compressor_release_ms=60,
|
855 |
+
vocal_gain_db=4,
|
856 |
+
background_highpass_freq=120, background_lowpass_freq=11000,
|
857 |
+
background_reverb_room_size=0.5, background_reverb_damping=0.5, background_reverb_wet_level=0.25,
|
858 |
+
background_compressor_threshold_db=-20, background_compressor_ratio=2.5, background_compressor_attack_ms=15, background_compressor_release_ms=80,
|
859 |
+
background_gain_db=3,
|
860 |
+
target_format="WAV",
|
861 |
):
|
862 |
if not media_file:
|
863 |
raise ValueError("The audio path is missing.")
|
|
|
875 |
print("Duration audio:", duration_base_)
|
876 |
except Exception as e:
|
877 |
print(e)
|
878 |
+
|
879 |
start_time = time.time()
|
880 |
|
881 |
+
if "vocal" in stem:
|
882 |
try:
|
883 |
_, _, _, _, vocal_audio = process_uvr_task(
|
884 |
orig_song_path=media_file,
|
|
|
906 |
gr.Info(str(error))
|
907 |
logger.error(str(error))
|
908 |
|
909 |
+
if "background" in stem:
|
910 |
background_audio, _ = process_uvr_task(
|
911 |
orig_song_path=media_file,
|
912 |
song_id=hash_audio + "voiceless",
|
|
|
919 |
file_name, file_extension = os.path.splitext(os.path.abspath(background_audio))
|
920 |
out_effects = file_name + suffix + file_extension
|
921 |
out_effects_path = os.path.join(media_dir, out_effects)
|
922 |
+
# print(file_name, file_extension, out_effects, out_effects_path)
|
923 |
add_instrumental_effects(background_audio, out_effects_path,
|
924 |
highpass_freq=background_highpass_freq, lowpass_freq=background_lowpass_freq,
|
925 |
reverb_room_size=background_reverb_room_size, reverb_damping=background_reverb_damping, reverb_wet_level=background_reverb_wet_level,
|
|
|
937 |
if not outputs:
|
938 |
raise Exception("Error in sound separation.")
|
939 |
|
940 |
+
return convert_format(outputs, media_dir, target_format)
|
941 |
|
942 |
|
943 |
def audio_downloader(
|
|
|
949 |
if not url_media:
|
950 |
return None
|
951 |
|
952 |
+
if IS_ZERO_GPU and "youtube.com" in url_media:
|
953 |
+
gr.Info("This option isn’t available on Hugging Face.")
|
954 |
+
return None
|
955 |
+
|
956 |
+
import yt_dlp
|
957 |
+
# print(url_media[:10])
|
958 |
|
959 |
dir_output_downloads = "downloads"
|
960 |
os.makedirs(dir_output_downloads, exist_ok=True)
|
|
|
1029 |
|
1030 |
|
1031 |
def stem_conf():
|
1032 |
+
return gr.CheckboxGroup(
|
1033 |
choices=["vocal", "background"],
|
1034 |
value="vocal",
|
1035 |
label="Stem",
|
|
|
1319 |
|
1320 |
|
1321 |
def show_vocal_components(value_name):
|
1322 |
+
v_ = "vocal" in value_name
|
1323 |
+
b_ = "background" in value_name
|
1324 |
|
1325 |
+
return gr.update(visible=v_), gr.update(
|
1326 |
+
visible=v_
|
1327 |
+
), gr.update(visible=v_), gr.update(
|
1328 |
+
visible=b_
|
1329 |
+
)
|
1330 |
+
|
1331 |
+
|
1332 |
+
FORMAT_OPTIONS = ["WAV", "MP3", "FLAC"]
|
1333 |
+
|
1334 |
+
|
1335 |
+
def format_conf():
|
1336 |
+
return gr.Dropdown(
|
1337 |
+
choices=FORMAT_OPTIONS,
|
1338 |
+
value=FORMAT_OPTIONS[0],
|
1339 |
+
label="Format output:"
|
1340 |
+
)
|
1341 |
|
1342 |
|
1343 |
def get_gui(theme):
|
1344 |
+
with gr.Blocks(theme=theme, fill_width=True, fill_height=False, delete_cache=(3200, 10800)) as app:
|
1345 |
gr.Markdown(title)
|
1346 |
gr.Markdown(description)
|
1347 |
|
|
|
1377 |
vocal_effects_gui = vocal_effects_conf()
|
1378 |
background_effects_gui = background_effects_conf()
|
1379 |
|
1380 |
+
with gr.Accordion("Vocal Effects Parameters", open=False):
|
|
|
|
|
1381 |
with gr.Row():
|
1382 |
vocal_reverb_room_size_gui = vocal_reverb_room_size_conf()
|
1383 |
vocal_reverb_damping_gui = vocal_reverb_damping_conf()
|
|
|
1391 |
vocal_compressor_release_ms_gui = vocal_compressor_release_ms_conf()
|
1392 |
vocal_gain_db_gui = vocal_gain_db_conf()
|
1393 |
|
1394 |
+
with gr.Accordion("Background Effects Parameters", open=False):
|
|
|
1395 |
with gr.Row():
|
1396 |
background_highpass_freq_gui = background_highpass_freq_conf()
|
1397 |
background_lowpass_freq_gui = background_lowpass_freq_conf()
|
|
|
1410 |
[main_gui, dereverb_gui, vocal_effects_gui, background_effects_gui],
|
1411 |
)
|
1412 |
|
1413 |
+
target_format_gui = format_conf()
|
1414 |
button_base = button_conf()
|
1415 |
output_base = output_conf()
|
1416 |
|
|
|
1429 |
background_highpass_freq_gui, background_lowpass_freq_gui, background_reverb_room_size_gui,
|
1430 |
background_reverb_damping_gui, background_reverb_wet_level_gui, background_compressor_threshold_db_gui,
|
1431 |
background_compressor_ratio_gui, background_compressor_attack_ms_gui, background_compressor_release_ms_gui,
|
1432 |
+
background_gain_db_gui, target_format_gui,
|
1433 |
],
|
1434 |
outputs=[output_base],
|
1435 |
)
|
|
|
1468 |
cache_examples=False,
|
1469 |
)
|
1470 |
|
1471 |
+
gr.Markdown(RESOURCES)
|
1472 |
+
|
1473 |
return app
|
1474 |
|
1475 |
|
1476 |
if __name__ == "__main__":
|
|
|
1477 |
for id_model in UVR_MODELS:
|
1478 |
download_manager(
|
1479 |
os.path.join(MDX_DOWNLOAD_LINK, id_model), mdxnet_models_dir
|
1480 |
)
|
1481 |
|
1482 |
app = get_gui(theme)
|
|
|
1483 |
app.queue(default_concurrency_limit=40)
|
|
|
1484 |
app.launch(
|
1485 |
max_threads=40,
|
1486 |
+
share=IS_COLAB,
|
1487 |
show_error=True,
|
1488 |
quiet=False,
|
1489 |
+
debug=IS_COLAB,
|
1490 |
+
ssr_mode=False,
|
1491 |
)
|
pre-requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pip<=23.1.2
|
2 |
+
Setuptools<=80.6.0
|
requirements.txt
CHANGED
@@ -1,5 +1,19 @@
|
|
1 |
soundfile
|
2 |
librosa
|
3 |
-
torch==2.
|
4 |
pedalboard
|
5 |
-
yt-dlp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
soundfile
|
2 |
librosa
|
3 |
+
torch==2.5.1
|
4 |
pedalboard
|
5 |
+
yt-dlp
|
6 |
+
tqdm
|
7 |
+
spaces
|
8 |
+
numpy<2
|
9 |
+
gradio==5.43.1
|
10 |
+
ffmpeg-python
|
11 |
+
scipy
|
12 |
+
scikit-learn
|
13 |
+
matplotlib
|
14 |
+
matplotlib-inline
|
15 |
+
seaborn
|
16 |
+
requests
|
17 |
+
urllib3
|
18 |
+
onnxruntime-gpu==1.22.0
|
19 |
+
# onnxruntime # only CPU
|