Spaces:
Sleeping
Sleeping
| """ | |
| Agent Evaluation Runner | |
| ====================== | |
| This module implements a framework for evaluating LLM agents against a set of questions | |
| and submitting the results to a scoring server. | |
| Main components: | |
| - BasicAgent: The agent implementation that processes questions | |
| - Evaluation functions: For running and submitting results | |
| - Gradio interface: For user interaction | |
| """ | |
| import os | |
| import logging | |
| from typing import Tuple, List, Dict, Any, Optional | |
| import gradio as gr | |
| import requests | |
| import pandas as pd | |
| from langchain_core.messages import HumanMessage | |
| from agent import build_graph | |
| # Configure logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format="%(asctime)s - %(levelname)s - %(message)s", | |
| datefmt="%Y-%m-%d %H:%M:%S" | |
| ) | |
| logger = logging.getLogger(__name__) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| REQUEST_TIMEOUT = 60 # seconds | |
| class BasicAgent: | |
| """ | |
| A LangGraph-based agent that answers questions using a graph-based workflow. | |
| This agent takes natural language questions, processes them through a | |
| predefined graph workflow, and returns the answer. | |
| Attributes: | |
| graph: The LangGraph workflow that processes the questions | |
| """ | |
| def __init__(self): | |
| """Initialize the agent with a graph-based workflow.""" | |
| logger.info("Initializing BasicAgent") | |
| self.graph = build_graph() | |
| def __call__(self, question: str) -> str: | |
| """ | |
| Process a question and return an answer. | |
| Args: | |
| question: The natural language question to process | |
| Returns: | |
| The agent's answer to the question | |
| """ | |
| logger.info(f"Processing question (first 50 chars): {question[:50]}...") | |
| # Wrap the question in a HumanMessage from langchain_core | |
| messages = [HumanMessage(content=question)] | |
| # Process through the graph | |
| messages = self.graph.invoke({"messages": messages}) | |
| # Extract and clean the answer | |
| answer = messages['messages'][-1].content | |
| # Remove the "FINAL ANSWER:" prefix if present | |
| return answer[14:] if answer.startswith("FINAL ANSWER:") else answer | |
| def fetch_questions(api_url: str) -> List[Dict[str, Any]]: | |
| """ | |
| Fetch questions from the evaluation server. | |
| Args: | |
| api_url: Base URL of the evaluation API | |
| Returns: | |
| List of question data dictionaries | |
| Raises: | |
| requests.exceptions.RequestException: If there's an error fetching questions | |
| """ | |
| questions_url = f"{api_url}/questions" | |
| logger.info(f"Fetching questions from: {questions_url}") | |
| response = requests.get(questions_url, timeout=REQUEST_TIMEOUT) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| raise ValueError("Fetched questions list is empty or invalid format") | |
| logger.info(f"Successfully fetched {len(questions_data)} questions") | |
| return questions_data | |
| def run_agent_on_questions( | |
| agent: BasicAgent, | |
| questions_data: List[Dict[str, Any]] | |
| ) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]: | |
| """ | |
| Run the agent on a list of questions. | |
| Args: | |
| agent: The agent to run | |
| questions_data: List of question data dictionaries | |
| Returns: | |
| Tuple of (answers_payload, results_log) | |
| """ | |
| results_log = [] | |
| answers_payload = [] | |
| logger.info(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| logger.warning(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question_text) | |
| # Prepare answer for submission | |
| answers_payload.append({ | |
| "task_id": task_id, | |
| "submitted_answer": submitted_answer | |
| }) | |
| # Log result for display | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text, | |
| "Submitted Answer": submitted_answer | |
| }) | |
| except Exception as e: | |
| logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True) | |
| # Log error in results | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text, | |
| "Submitted Answer": f"AGENT ERROR: {e}" | |
| }) | |
| return answers_payload, results_log | |
| def submit_answers( | |
| api_url: str, | |
| username: str, | |
| agent_code: str, | |
| answers_payload: List[Dict[str, Any]] | |
| ) -> Dict[str, Any]: | |
| """ | |
| Submit answers to the evaluation server. | |
| Args: | |
| api_url: Base URL of the evaluation API | |
| username: Hugging Face username | |
| agent_code: URL to the agent code repository | |
| answers_payload: List of answer dictionaries | |
| Returns: | |
| Response data from the server | |
| Raises: | |
| requests.exceptions.RequestException: If there's an error during submission | |
| """ | |
| submit_url = f"{api_url}/submit" | |
| # Prepare submission data | |
| submission_data = { | |
| "username": username.strip(), | |
| "agent_code": agent_code, | |
| "answers": answers_payload | |
| } | |
| logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| # Submit answers | |
| response = requests.post(submit_url, json=submission_data, timeout=REQUEST_TIMEOUT) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| logger.info("Submission successful") | |
| return result_data | |
| def run_and_submit_all(profile: Optional[gr.OAuthProfile] = None) -> Tuple[str, pd.DataFrame]: | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| Args: | |
| profile: Gradio OAuth profile containing user information | |
| Returns: | |
| Tuple of (status_message, results_dataframe) | |
| """ | |
| # Check if user is logged in | |
| if not profile: | |
| logger.warning("User not logged in") | |
| return "Please Login to Hugging Face with the button.", None | |
| username = profile.username | |
| logger.info(f"User logged in: {username}") | |
| # Get the space ID for linking to code | |
| space_id = os.getenv("SPACE_ID") | |
| api_url = DEFAULT_API_URL | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| try: | |
| # 1. Instantiate Agent | |
| agent = BasicAgent() | |
| # 2. Fetch Questions | |
| questions_data = fetch_questions(api_url) | |
| # 3. Run Agent on Questions | |
| answers_payload, results_log = run_agent_on_questions(agent, questions_data) | |
| if not answers_payload: | |
| logger.warning("Agent did not produce any answers to submit") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Submit Answers | |
| result_data = submit_answers(api_url, username, agent_code, answers_payload) | |
| # 5. Format and Return Results | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| # Handle HTTP errors with detailed error information | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| logger.error(status_message) | |
| results_df = pd.DataFrame(results_log if 'results_log' in locals() else []) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = f"Submission Failed: The request timed out after {REQUEST_TIMEOUT} seconds" | |
| logger.error(status_message) | |
| results_df = pd.DataFrame(results_log if 'results_log' in locals() else []) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred: {str(e)}" | |
| logger.error(status_message, exc_info=True) | |
| results_df = pd.DataFrame(results_log if 'results_log' in locals() else []) | |
| return status_message, results_df | |
| def create_gradio_interface() -> gr.Blocks: | |
| """ | |
| Create and configure the Gradio interface. | |
| Returns: | |
| Configured Gradio Blocks interface | |
| """ | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| ## Instructions | |
| 1. **Clone this space** and modify the code to define your agent's logic, tools, and dependencies | |
| 2. **Log in to your Hugging Face account** using the button below (required for submission) | |
| 3. **Run Evaluation** to fetch questions, run your agent, and submit answers | |
| ## Important Notes | |
| - The evaluation process may take several minutes to complete | |
| - This agent framework is intentionally minimal to allow for your own improvements | |
| - Consider implementing caching or async processing for better performance | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") | |
| status_output = gr.Textbox( | |
| label="Run Status / Submission Result", | |
| lines=5, | |
| interactive=False | |
| ) | |
| results_table = gr.DataFrame( | |
| label="Questions and Agent Answers", | |
| wrap=True | |
| ) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| return demo | |
| def check_environment() -> None: | |
| """ | |
| Check and log environment variables at startup. | |
| """ | |
| logger.info("-" * 30 + " App Starting " + "-" * 30) | |
| # Check for SPACE_HOST | |
| space_host = os.getenv("SPACE_HOST") | |
| if space_host: | |
| logger.info(f"✅ SPACE_HOST found: {space_host}") | |
| logger.info(f" Runtime URL should be: https://{space_host}.hf.space") | |
| else: | |
| logger.info("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| # Check for SPACE_ID | |
| space_id = os.getenv("SPACE_ID") | |
| if space_id: | |
| logger.info(f"✅ SPACE_ID found: {space_id}") | |
| logger.info(f" Repo URL: https://huggingface.co/spaces/{space_id}") | |
| logger.info(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main") | |
| else: | |
| logger.info("ℹ️ SPACE_ID environment variable not found (running locally?).") | |
| logger.info("-" * (60 + len(" App Starting ")) + "\n") | |
| if __name__ == "__main__": | |
| # Check environment at startup | |
| check_environment() | |
| # Create and launch Gradio interface | |
| logger.info("Launching Gradio Interface for Agent Evaluation...") | |
| demo = create_gradio_interface() | |
| demo.launch(debug=True, share=False) |