Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,605 Bytes
93a4a97 7665754 93a4a97 7665754 6a66448 7665754 145fc8a ba4f365 7665754 dedc3b3 7665754 5989cf8 7665754 aaf4035 7665754 2b61eb9 d7195c9 2b61eb9 d7195c9 2b61eb9 d7195c9 2b61eb9 d7195c9 2b61eb9 d7195c9 2b61eb9 d7195c9 2b61eb9 79e5760 d7195c9 2b61eb9 7665754 d7195c9 2b61eb9 d7195c9 2b61eb9 d7195c9 2b61eb9 7665754 d7195c9 7665754 2b61eb9 d7195c9 2b61eb9 d7195c9 2b61eb9 7665754 d7195c9 7665754 d7195c9 7665754 d7195c9 7665754 2b61eb9 d7195c9 2b61eb9 7665754 2b61eb9 7665754 2b61eb9 d7195c9 2b61eb9 7665754 d7195c9 2b61eb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import spaces
import gradio as gr
import torch
import os
import traceback
from diffusers import ZImagePipeline
from huggingface_hub import list_repo_files
from PIL import Image
# ============================================================
# CONFIG
# ============================================================
MODEL_ID = "Tongyi-MAI/Z-Image-Turbo"
DEFAULT_LORA_REPO = "rahul7star/ZImageLora"
DTYPE = torch.bfloat16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# ============================================================
# GLOBAL STATE
# ============================================================
pipe = None
CURRENT_LORA_REPO = None
CURRENT_LORA_FILE = None
# ============================================================
# LOGGING
# ============================================================
def log(msg):
print(msg)
return msg
# ============================================================
# PIPELINE BUILD (ONCE)
# ============================================================
try:
pipe = ZImagePipeline.from_pretrained(
MODEL_ID,
torch_dtype=DTYPE,
)
pipe.to(DEVICE)
log("✅ Pipeline built successfully")
except Exception as e:
log("❌ Pipeline build failed")
log(traceback.format_exc())
pipe = None
# ============================================================
# HELPERS
# ============================================================
def list_loras_from_repo(repo_id: str):
try:
files = list_repo_files(repo_id)
return [f for f in files if f.endswith(".safetensors")]
except Exception as e:
log(f"❌ Failed to list LoRAs: {e}")
return []
# ============================================================
# IMAGE GENERATION (SAFE LORA LOGIC)
# ============================================================
@spaces.GPU()
def generate_image(prompt, height, width, steps, seed, guidance_scale):
LOGS = []
print(prompt)
if pipe is None:
return None, [], "❌ Pipeline not initialized"
generator = torch.Generator().manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), (255, 255, 255))
previews = []
# ---- Always start clean ----
try:
pipe.unload_lora_weights()
except Exception:
pass
# ---- Load LoRA for this run only ----
if CURRENT_LORA_FILE:
try:
pipe.load_lora_weights(
CURRENT_LORA_REPO,
weight_name=CURRENT_LORA_FILE
)
LOGS.append(f"🧩 LoRA loaded: {CURRENT_LORA_FILE}")
except Exception as e:
LOGS.append(f"❌ LoRA load failed: {e}")
# ---- Preview steps (lightweight) ----
try:
num_previews = min(5, steps)
for i in range(num_previews):
out = pipe(
prompt=prompt,
height=height // 4,
width=width // 4,
num_inference_steps=i + 1,
guidance_scale=guidance_scale,
generator=generator,
)
img = out.images[0].resize((width, height))
previews.append(img)
yield None, previews, "\n".join(LOGS)
except Exception as e:
LOGS.append(f"⚠️ Preview failed: {e}")
# ---- Final image ----
try:
out = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = out.images[0]
previews.append(final_img)
LOGS.append("✅ Image generated")
yield final_img, previews, "\n".join(LOGS)
except Exception as e:
LOGS.append(f"❌ Generation failed: {e}")
yield placeholder, previews, "\n".join(LOGS)
finally:
# ---- CRITICAL: unload after run ----
try:
pipe.unload_lora_weights()
LOGS.append("🧹 LoRA unloaded")
except Exception:
pass
# ============================================================
# GRADIO UI
# ============================================================
css = """
.gradio-container {
max-width: 100% !important;
padding: 16px 32px !important;
}
.section {
margin-bottom: 12px;
}
.generate-btn {
background: linear-gradient(90deg, #4b6cb7, #182848) !important;
color: white !important;
font-weight: 600;
height: 46px;
border-radius: 10px;
}
.secondary-btn {
height: 42px;
border-radius: 10px;
}
textarea, input {
border-radius: 10px !important;
}
"""
with gr.Blocks(
title="Z-Image-Turbo (Runtime LoRA)",
css=css,
) as demo:
gr.Markdown(
"""
# 🎨 Z-Image-Turbo LORA
**Runtime LoRA · Safe Mode · Full-Width UI**
"""
)
# ======================================================
# MAIN LAYOUT
# ======================================================
with gr.Row():
# ================= LEFT PANEL =================
with gr.Column(scale=5):
# -------- Prompt --------
prompt = gr.Textbox(
label="Prompt",
value="boat in ocean",
lines=4,
placeholder="Describe the image you want to generate…",
)
# -------- LoRA Controls (NEXT TO PROMPT) --------
gr.Markdown("### 🧩 LoRA Controls")
lora_repo = gr.Textbox(
label="LoRA Repository",
value=DEFAULT_LORA_REPO,
lines=2,
placeholder="username/repo (e.g. rahul7star/ZImageLora)",
)
lora_dropdown = gr.Dropdown(
label="LoRA File",
choices=[],
interactive=True,
)
with gr.Row():
refresh_btn = gr.Button("🔄 Refresh LoRA List", elem_classes="secondary-btn")
clear_lora_btn = gr.Button("❌ Clear LoRA", elem_classes="secondary-btn")
# -------- Generation Controls --------
gr.Markdown("### ⚙️ Generation Settings")
with gr.Row():
width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
with gr.Row():
steps = gr.Slider(1, 50, value=20, step=1, label="Steps")
guidance = gr.Slider(0, 10, value=0.0, step=0.5, label="Guidance")
seed = gr.Number(value=42, label="Seed", precision=0)
run_btn = gr.Button("🚀 Generate Image", elem_classes="generate-btn")
logs_box = gr.Textbox(
label="Logs",
lines=10,
interactive=False,
)
# ================= RIGHT PANEL =================
with gr.Column(scale=7):
final_image = gr.Image(
label="Final Image",
height=520,
)
gallery = gr.Gallery(
label="Generation Steps",
columns=4,
height=260,
)
# ======================================================
# CALLBACKS
# ======================================================
def refresh_loras(repo):
files = list_loras_from_repo(repo)
return gr.update(
choices=files,
value=files[0] if files else None,
)
refresh_btn.click(
refresh_loras,
inputs=[lora_repo],
outputs=[lora_dropdown],
)
def select_lora(lora_file, repo):
global CURRENT_LORA_FILE, CURRENT_LORA_REPO
CURRENT_LORA_FILE = lora_file
CURRENT_LORA_REPO = repo
return f"🧩 Selected LoRA: {lora_file}"
lora_dropdown.change(
select_lora,
inputs=[lora_dropdown, lora_repo],
outputs=[logs_box],
)
def clear_lora():
global CURRENT_LORA_FILE, CURRENT_LORA_REPO
CURRENT_LORA_FILE = None
CURRENT_LORA_REPO = None
try:
pipe.unload_lora_weights()
except Exception:
pass
return (
gr.update(value=None),
"🧹 LoRA cleared — base model will be used."
)
clear_lora_btn.click(
clear_lora,
outputs=[lora_dropdown, logs_box],
)
run_btn.click(
generate_image,
inputs=[prompt, height, width, steps, seed, guidance],
outputs=[final_image, gallery, logs_box],
)
demo.launch()
|