File size: 4,678 Bytes
bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f 211e07c 2f0ef1f 9951815 2f0ef1f f9d0ff2 bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f bc3d1f2 2f0ef1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import os
from dotenv import load_dotenv
from supabase import create_client
from supabase.client import Client
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.tools.retriever import create_retriever_tool
load_dotenv()
# Check environment variables
SUPABASE_URL = os.environ.get("SUPABASE_URL")
SUPABASE_SERVICE_KEY = os.environ.get("SUPABASE_SERVICE_KEY")
print(f"SUPABASE_URL: {SUPABASE_URL[:10]}..." if SUPABASE_URL else "SUPABASE_URL not set")
print(f"SUPABASE_SERVICE_KEY: {SUPABASE_SERVICE_KEY[:10]}..." if SUPABASE_SERVICE_KEY else "SUPABASE_SERVICE_KEY not set")
def get_supabase_client():
if not SUPABASE_URL or not SUPABASE_SERVICE_KEY:
raise ValueError("Supabase environment variables are missing.")
return create_client(SUPABASE_URL, SUPABASE_SERVICE_KEY)
@tool
def multiply(a: int, b: int) -> int:
return a * b
@tool
def add(a: int, b: int) -> int:
return a + b
@tool
def subtract(a: int, b: int) -> int:
return a - b
@tool
def divide(a: int, b: int) -> int:
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
return a % b
@tool
def wiki_search(query: str) -> str:
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join([doc.page_content for doc in docs])
@tool
def web_search(query: str) -> str:
docs = TavilySearchResults(max_results=3).invoke(query=query)
return "\n\n---\n\n".join([doc.page_content for doc in docs])
@tool
def arvix_search(query: str) -> str:
docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in docs])
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "groq"):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase = get_supabase_client()
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider specified")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
similar = vector_store.similarity_search(state["messages"][0].content)
msg = HumanMessage(content=f"Similar question reference:\n\n{similar[0].page_content}")
return {"messages": [sys_msg] + state["messages"] + [msg]}
graph = StateGraph(MessagesState)
graph.add_node("retriever", retriever)
graph.add_node("assistant", assistant)
graph.add_node("tools", ToolNode(tools))
graph.add_edge(START, "retriever")
graph.add_edge("retriever", "assistant")
graph.add_conditional_edges("assistant", tools_condition)
graph.add_edge("tools", "assistant")
return graph.compile()
if __name__ == "__main__":
g = build_graph("groq")
question = "When was Aquinas added to Wikipedia page on double effect?"
output = g.invoke({"messages": [HumanMessage(content=question)]})
for msg in output["messages"]:
msg.pretty_print()
|