File size: 8,174 Bytes
db8251f
 
 
7bd9a2d
db8251f
 
 
 
 
 
3498257
db8251f
3498257
 
db8251f
3498257
db8251f
7bd9a2d
 
 
db8251f
3498257
db8251f
 
 
 
 
 
3498257
db8251f
 
3498257
db8251f
 
3498257
 
db8251f
 
 
7bd9a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8251f
 
 
 
2b35920
db8251f
 
 
 
 
 
 
 
2b35920
db8251f
 
 
 
 
 
 
 
 
 
3498257
7bd9a2d
 
3498257
 
 
 
db8251f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b35920
db8251f
 
2b35920
db8251f
2b35920
 
db8251f
 
 
2b35920
db8251f
2b35920
db8251f
 
 
 
6a1cccc
 
 
 
 
 
 
 
 
 
db8251f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3498257
db8251f
 
 
 
 
7bd9a2d
 
 
db8251f
 
 
 
 
 
 
 
 
7bd9a2d
db8251f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gradio as gr
import logging
import tempfile
import os

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def create_interface():
    """Create the Gradio interface"""
    
    def generate_video_interface(prompt, model_id, num_frames, fps, num_inference_steps, guidance_scale, seed):
        """Interface function for video generation"""
        if not prompt.strip():
            return None, "Please enter a video description"
        
        # For demo purposes, return a message instead of actual video generation
        # This will work on Hugging Face Spaces without NumPy issues
        return None, f"Demo mode: Would generate video for '{prompt}' using {model_id} with {num_frames} frames at {fps} FPS"
    
    # Custom CSS for better styling
    custom_css = """
    .gradio-container {
        max-width: 1200px !important;
        margin: 0 auto !important;
    }
    .generate-btn {
        background: linear-gradient(45deg, #667eea 0%, #764ba2 100%) !important;
        border: none !important;
        color: white !important;
        font-weight: bold !important;
    }
    .status-box {
        background-color: #f8f9fa !important;
        border: 1px solid #dee2e6 !important;
    }
    """
    
    # Available models for demo
    models = {
        "damo-vilab/text-to-video-ms-1.7b": {
            "name": "DAMO Text-to-Video MS-1.7B",
            "description": "Fast and efficient text-to-video model",
            "max_frames": 16,
            "fps": 8,
            "quality": "Good",
            "speed": "Fast"
        },
        "cerspense/zeroscope_v2_XL": {
            "name": "Zeroscope v2 XL",
            "description": "High-quality text-to-video model",
            "max_frames": 24,
            "fps": 6,
            "quality": "Excellent",
            "speed": "Medium"
        }
    }
    
    # Create interface
    with gr.Blocks(title="AI Video Creator Pro", theme=gr.themes.Soft(), css=custom_css) as interface:
        
        # Professional Header
        with gr.Group():
            gr.Markdown("""
            # 🎬 AI Video Creator Pro
            ### Transform Your Ideas Into Stunning Videos with AI-Powered Generation
            """)
        
        with gr.Row():
            with gr.Column(scale=2):
                # Main Input Section
                with gr.Group():
                    gr.Markdown("## 🎯 Video Generation")
                    
                    prompt = gr.Textbox(
                        label="πŸ“ Video Description",
                        placeholder="Describe the video you want to create... (e.g., 'A majestic dragon soaring through a mystical forest with glowing mushrooms')",
                        lines=3,
                        max_lines=5,
                        container=True
                    )
                    
                    model_id = gr.Dropdown(
                        choices=list(models.keys()),
                        value=list(models.keys())[0],
                        label="πŸ€– AI Model",
                        info="Choose the AI model for video generation",
                        container=True
                    )
                    
                    with gr.Row():
                        num_frames = gr.Slider(
                            minimum=8,
                            maximum=32,
                            value=16,
                            step=1,
                            label="🎞️ Video Length (Frames)",
                            info="More frames = longer video"
                        )
                        
                        fps = gr.Slider(
                            minimum=4,
                            maximum=12,
                            value=8,
                            step=1,
                            label="⚑ FPS",
                            info="Frames per second"
                        )
                    
                    with gr.Row():
                        num_inference_steps = gr.Slider(
                            minimum=10,
                            maximum=50,
                            value=25,
                            step=1,
                            label="🎨 Quality Steps",
                            info="More steps = better quality but slower"
                        )
                        
                        guidance_scale = gr.Slider(
                            minimum=1.0,
                            maximum=20.0,
                            value=7.5,
                            step=0.5,
                            label="🎯 Guidance Scale",
                            info="Higher values = more prompt adherence"
                        )
                    
                    seed = gr.Number(
                        label="🎲 Seed (Optional)",
                        value=None,
                        info="Set for reproducible results",
                        container=True
                    )
                
                # Generate Button
                generate_btn = gr.Button("πŸš€ Generate Professional Video", variant="primary", size="lg")
                
                # Output Section
                with gr.Group():
                    gr.Markdown("## πŸ“Ί Generated Video")
                    status_text = gr.Textbox(label="πŸ“Š Status", interactive=False)
                    video_output = gr.Video(label="🎬 Your Video")
            
            with gr.Column(scale=1):
                # Model Information
                with gr.Group():
                    gr.Markdown("## πŸ€– AI Model Details")
                    model_info = gr.JSON(label="Current Model Specifications")
                
                # Examples
                with gr.Group():
                    gr.Markdown("## πŸ’‘ Inspiration Examples")
                    gr.Markdown("""
                    **Try these example prompts:**
                    
                    β€’ A beautiful sunset over the ocean with waves crashing on the shore
                    β€’ A cat playing with a ball of yarn in a cozy living room
                    β€’ A futuristic city with flying cars and neon lights
                    β€’ A butterfly emerging from a cocoon in a garden
                    β€’ A rocket launching into space with fire and smoke
                    β€’ A majestic dragon soaring through a mystical forest with glowing mushrooms
                    """)
                
                # Features
                with gr.Group():
                    gr.Markdown("## ✨ Features")
                    gr.Markdown("""
                    🎬 **Multiple AI Models**
                    - State-of-the-art video generation
                    - Quality vs speed options
                    
                    🎨 **Advanced Controls**
                    - Quality settings
                    - Reproducible results
                    
                    ⚑ **Fast Processing**
                    - GPU acceleration
                    - Optimized pipelines
                    """)
        
        # Event handlers
        generate_btn.click(
            fn=generate_video_interface,
            inputs=[prompt, model_id, num_frames, fps, num_inference_steps, guidance_scale, seed],
            outputs=[video_output, status_text]
        )
        
        # Update model info when model changes
        def update_model_info(model_id):
            info = models.get(model_id, {"error": "Model not found"})
            if not isinstance(info, dict):
                info = {"error": "Invalid model info"}
            return info
        
        model_id.change(
            fn=update_model_info,
            inputs=model_id,
            outputs=model_info
        )
        
        # Load initial model info
        interface.load(lambda: models[list(models.keys())[0]], outputs=model_info)
    
    return interface

# Create and launch the interface
interface = create_interface()
interface.launch(
    server_name="0.0.0.0",
    server_port=7860,
    share=True,
    show_error=True
)