Spaces:
Running
Running
File size: 17,325 Bytes
db8251f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import gradio as gr
import logging
import tempfile
import os
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class TextToVideoGenerator:
def __init__(self):
self.device = "cpu" # Simplified for testing
# Available models - including the advanced Wan2.1 model
self.models = {
"damo-vilab/text-to-video-ms-1.7b": {
"name": "DAMO Text-to-Video MS-1.7B",
"description": "Fast and efficient text-to-video model",
"max_frames": 16,
"fps": 8,
"quality": "Good",
"speed": "Fast"
},
"cerspense/zeroscope_v2_XL": {
"name": "Zeroscope v2 XL",
"description": "High-quality text-to-video model",
"max_frames": 24,
"fps": 6,
"quality": "Excellent",
"speed": "Medium"
},
"Wan-AI/Wan2.1-T2V-14B": {
"name": "Wan2.1-T2V-14B (SOTA)",
"description": "State-of-the-art text-to-video model with 14B parameters",
"max_frames": 32,
"fps": 8,
"quality": "SOTA",
"speed": "Medium",
"resolutions": ["480P", "720P"],
"features": ["Chinese & English text", "High motion dynamics", "Best quality"]
}
}
# Voice options (gTTS only supports language, not gender/age)
self.voices = {
"Default (English)": "en"
}
def generate_video(self, prompt, model_id, num_frames=16, fps=8, num_inference_steps=25, guidance_scale=7.5, seed=None, resolution="480P", voice_script="", voice_type="Default (English)", add_voice=True):
"""Generate video from text prompt with optional voice (DEMO VERSION)"""
try:
# This is a demo version that simulates video generation
logger.info(f"DEMO: Would generate video with prompt: {prompt}")
logger.info(f"DEMO: Model: {model_id}, Frames: {num_frames}, FPS: {fps}")
if add_voice and voice_script.strip():
logger.info(f"DEMO: Would add voice narration: {voice_script}")
# Create a dummy video file for demonstration
dummy_video_path = "demo_video.mp4"
# For demo purposes, return a success message
return dummy_video_path, f"DEMO: Video generation completed! (This is a test version - no actual video generated)"
except Exception as e:
logger.error(f"Error in demo video generation: {str(e)}")
return None, f"Demo error: {str(e)}"
def get_available_models(self):
"""Get list of available models"""
return list(self.models.keys())
def get_model_info(self, model_id):
"""Get information about a specific model"""
if model_id in self.models:
return self.models[model_id]
return None
def get_available_voices(self):
"""Get list of available voices"""
return list(self.voices.keys())
# Initialize the generator
generator = TextToVideoGenerator()
def create_interface():
"""Create Gradio interface"""
def generate_video_interface(prompt, model_id, num_frames, fps, num_inference_steps, guidance_scale, seed, resolution, voice_script, voice_type, add_voice):
if not prompt.strip():
return None, "Please enter a prompt"
return generator.generate_video(
prompt=prompt,
model_id=model_id,
num_frames=num_frames,
fps=fps,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed,
resolution=resolution,
voice_script=voice_script,
voice_type=voice_type,
add_voice=add_voice
)
# Custom CSS for professional styling
custom_css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
}
.header {
text-align: center;
padding: 2rem 0;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 15px;
margin-bottom: 2rem;
}
.header h1 {
font-size: 2.5rem;
font-weight: 700;
margin: 0;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}
.header p {
font-size: 1.1rem;
margin: 0.5rem 0 0 0;
opacity: 0.9;
}
.feature-card {
background: white;
border-radius: 10px;
padding: 1.5rem;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
margin-bottom: 1rem;
border-left: 4px solid #667eea;
}
.feature-card h3 {
color: #333;
margin: 0 0 0.5rem 0;
font-size: 1.2rem;
}
.feature-card p {
color: #666;
margin: 0;
font-size: 0.9rem;
}
.model-info {
background: #f8f9fa;
border-radius: 8px;
padding: 1rem;
border: 1px solid #e9ecef;
}
.model-info h4 {
color: #495057;
margin: 0 0 0.5rem 0;
font-size: 1rem;
}
.model-info p {
color: #6c757d;
margin: 0.25rem 0;
font-size: 0.85rem;
}
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-weight: 600 !important;
padding: 1rem 2rem !important;
border-radius: 10px !important;
font-size: 1.1rem !important;
transition: all 0.3s ease !important;
}
.generate-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 12px rgba(102, 126, 234, 0.4) !important;
}
.example-card {
background: #f8f9fa;
border-radius: 8px;
padding: 1rem;
margin: 0.5rem 0;
border: 1px solid #e9ecef;
cursor: pointer;
transition: all 0.2s ease;
}
.example-card:hover {
background: #e9ecef;
transform: translateX(5px);
}
.status-box {
background: #e3f2fd;
border: 1px solid #2196f3;
border-radius: 8px;
padding: 1rem;
}
.pricing-info {
background: linear-gradient(135deg, #ffecd2 0%, #fcb69f 100%);
border-radius: 10px;
padding: 1rem;
text-align: center;
margin: 1rem 0;
}
.pricing-info h4 {
color: #d84315;
margin: 0 0 0.5rem 0;
}
.pricing-info p {
color: #bf360c;
margin: 0;
font-size: 0.9rem;
}
.demo-notice {
background: linear-gradient(135deg, #fff3cd 0%, #ffeaa7 100%);
border: 1px solid #ffc107;
border-radius: 8px;
padding: 1rem;
margin: 1rem 0;
text-align: center;
}
"""
# Create interface
with gr.Blocks(title="AI Video Creator Pro - DEMO", theme=gr.themes.Soft(), css=custom_css) as interface:
# Professional Header
with gr.Group(elem_classes="header"):
gr.Markdown("""
# π¬ AI Video Creator Pro
### Transform Your Ideas Into Stunning Videos with AI-Powered Generation
""")
# Demo Notice
with gr.Group(elem_classes="demo-notice"):
gr.Markdown("""
## π§ DEMO VERSION
This is a demonstration of the professional UI. Video generation is simulated for testing purposes.
The full version with actual AI video generation will be available once dependencies are resolved.
""")
with gr.Row():
with gr.Column(scale=2):
# Main Input Section
with gr.Group(elem_classes="feature-card"):
gr.Markdown("## π― Video Generation")
prompt = gr.Textbox(
label="π Video Description",
placeholder="Describe the video you want to create... (e.g., 'A majestic dragon soaring through a mystical forest with glowing mushrooms')",
lines=3,
max_lines=5,
container=True
)
with gr.Row():
model_id = gr.Dropdown(
choices=generator.get_available_models(),
value=generator.get_available_models()[0],
label="π€ AI Model",
info="Choose the AI model for video generation",
container=True
)
resolution = gr.Dropdown(
choices=["480P", "720P"],
value="480P",
label="π Resolution (Wan2.1 only)",
info="Select video resolution",
visible=False,
container=True
)
with gr.Row():
num_frames = gr.Slider(
minimum=8,
maximum=32,
value=16,
step=1,
label="ποΈ Video Length (Frames)",
info="More frames = longer video"
)
fps = gr.Slider(
minimum=4,
maximum=12,
value=8,
step=1,
label="β‘ FPS",
info="Frames per second"
)
with gr.Row():
num_inference_steps = gr.Slider(
minimum=10,
maximum=50,
value=25,
step=1,
label="π¨ Quality Steps",
info="More steps = better quality but slower"
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.5,
label="π― Guidance Scale",
info="Higher values = more prompt adherence"
)
seed = gr.Number(
label="π² Seed (Optional)",
value=None,
info="Set for reproducible results",
container=True
)
# Voice Section
with gr.Group(elem_classes="feature-card"):
gr.Markdown("## π€ Voice & Audio")
with gr.Row():
add_voice = gr.Checkbox(
label="π΅ Add Voice Narration",
value=True,
info="Enable to add professional voice-over"
)
voice_type = gr.Dropdown(
choices=generator.get_available_voices(),
value="Default (English)",
label="π£οΈ Voice Type",
info="Select the voice for narration",
container=True
)
voice_script = gr.Textbox(
label="π Narration Script (Optional)",
placeholder="Enter your narration script here... (Leave blank to use video description)",
lines=2,
max_lines=3,
info="If left blank, the video description will be used as narration",
container=True
)
# Generate Button
generate_btn = gr.Button("π Generate Professional Video (DEMO)", variant="primary", size="lg", elem_classes="generate-btn")
# Output Section
with gr.Group(elem_classes="feature-card"):
gr.Markdown("## πΊ Generated Video")
status_text = gr.Textbox(label="π Status", interactive=False, elem_classes="status-box")
video_output = gr.Video(label="π¬ Your Video", elem_classes="status-box")
with gr.Column(scale=1):
# Model Information
with gr.Group(elem_classes="model-info"):
gr.Markdown("## π€ AI Model Details")
model_info = gr.JSON(label="Current Model Specifications", elem_classes="model-info")
# Pricing Information
with gr.Group(elem_classes="pricing-info"):
gr.Markdown("## π° Pricing")
gr.Markdown("""
**Free Tier:** 5 videos per day
**Pro Plan:** $9.99/month
- Unlimited videos
- Priority processing
- HD quality
- Advanced features
**Enterprise:** Contact us
""")
# Examples
with gr.Group():
gr.Markdown("## π‘ Inspiration Examples")
examples = [
["A beautiful sunset over the ocean with waves crashing on the shore"],
["A cat playing with a ball of yarn in a cozy living room"],
["A futuristic city with flying cars and neon lights"],
["A butterfly emerging from a cocoon in a garden"],
["A rocket launching into space with fire and smoke"],
["Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage"],
["A majestic dragon soaring through a mystical forest with glowing mushrooms"]
]
gr.Examples(
examples=examples,
inputs=prompt,
label="Click to try these examples"
)
# Features
with gr.Group():
gr.Markdown("## β¨ Features")
gr.Markdown("""
π¬ **Multiple AI Models**
- State-of-the-art video generation
- Quality vs speed options
π€ **Professional Voice-Over**
- Multiple voice types
- Custom narration scripts
π¨ **Advanced Controls**
- Quality settings
- Resolution options
- Reproducible results
β‘ **Fast Processing**
- GPU acceleration
- Optimized pipelines
""")
# Event handlers
generate_btn.click(
fn=generate_video_interface,
inputs=[prompt, model_id, num_frames, fps, num_inference_steps, guidance_scale, seed, resolution, voice_script, voice_type, add_voice],
outputs=[video_output, status_text]
)
# Update model info when model changes
def update_model_info(model_id):
info = generator.get_model_info(model_id)
return info
# Show/hide resolution selector based on model
def update_resolution_visibility(model_id):
if model_id == "Wan-AI/Wan2.1-T2V-14B":
return gr.Dropdown(visible=True)
else:
return gr.Dropdown(visible=False)
model_id.change(
fn=update_model_info,
inputs=model_id,
outputs=model_info
)
model_id.change(
fn=update_resolution_visibility,
inputs=model_id,
outputs=resolution
)
# Load initial model info
interface.load(lambda: generator.get_model_info(generator.get_available_models()[0]), outputs=model_info)
return interface
# Create and launch the interface
interface = create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7861,
share=True,
show_error=True
) |