File size: 11,145 Bytes
db8251f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import gradio as gr
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
import numpy as np
from PIL import Image
import os
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class TextToVideoGenerator:
    def __init__(self):
        self.pipeline = None
        self.current_model = None
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        logger.info(f"Using device: {self.device}")
        
        # Available models
        self.models = {
            "damo-vilab/text-to-video-ms-1.7b": {
                "name": "DAMO Text-to-Video MS-1.7B",
                "description": "Fast and efficient text-to-video model",
                "max_frames": 16,
                "fps": 8
            },
            "cerspense/zeroscope_v2_XL": {
                "name": "Zeroscope v2 XL",
                "description": "High-quality text-to-video model",
                "max_frames": 24,
                "fps": 6
            },
            "stabilityai/stable-video-diffusion-img2vid-xt": {
                "name": "Stable Video Diffusion XT",
                "description": "Image-to-video model (requires initial image)",
                "max_frames": 25,
                "fps": 6
            }
        }
    
    def load_model(self, model_id):
        """Load the specified model"""
        if self.current_model == model_id and self.pipeline is not None:
            return f"Model {self.models[model_id]['name']} is already loaded"
        
        try:
            logger.info(f"Loading model: {model_id}")
            
            # Clear GPU memory if needed
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            
            # Load pipeline
            self.pipeline = DiffusionPipeline.from_pretrained(
                model_id,
                torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
                variant="fp16" if self.device == "cuda" else None
            )
            
            # Move to device
            self.pipeline = self.pipeline.to(self.device)
            
            # Optimize scheduler for faster inference
            if hasattr(self.pipeline, 'scheduler'):
                self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
                    self.pipeline.scheduler.config
                )
            
            # Enable memory efficient attention if available
            if self.device == "cuda":
                self.pipeline.enable_model_cpu_offload()
                self.pipeline.enable_vae_slicing()
            
            self.current_model = model_id
            logger.info(f"Successfully loaded model: {model_id}")
            return f"Successfully loaded {self.models[model_id]['name']}"
            
        except Exception as e:
            logger.error(f"Error loading model: {str(e)}")
            return f"Error loading model: {str(e)}"
    
    def generate_video(self, prompt, model_id, num_frames=16, fps=8, num_inference_steps=25, guidance_scale=7.5, seed=None):
        """Generate video from text prompt"""
        try:
            # Load model if not already loaded
            if self.current_model != model_id:
                load_result = self.load_model(model_id)
                if "Error" in load_result:
                    return None, load_result
            
            # Set seed for reproducibility
            if seed is not None:
                torch.manual_seed(seed)
                if torch.cuda.is_available():
                    torch.cuda.manual_seed(seed)
            
            # Get model config
            model_config = self.models[model_id]
            num_frames = min(num_frames, model_config["max_frames"])
            fps = model_config["fps"]
            
            logger.info(f"Generating video with prompt: {prompt}")
            logger.info(f"Parameters: frames={num_frames}, fps={fps}, steps={num_inference_steps}")
            
            # Generate video
            video_frames = self.pipeline(
                prompt,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                num_frames=num_frames
            ).frames
            
            # Convert to numpy array
            video_frames = np.array(video_frames)
            
            # Save video
            output_path = f"generated_video_{seed if seed else 'random'}.mp4"
            export_to_video(video_frames, output_path, fps=fps)
            
            logger.info(f"Video saved to: {output_path}")
            return output_path, f"Video generated successfully! Saved as {output_path}"
            
        except Exception as e:
            logger.error(f"Error generating video: {str(e)}")
            return None, f"Error generating video: {str(e)}"
    
    def get_available_models(self):
        """Get list of available models"""
        return list(self.models.keys())
    
    def get_model_info(self, model_id):
        """Get information about a specific model"""
        if model_id in self.models:
            return self.models[model_id]
        return None

# Initialize the generator
generator = TextToVideoGenerator()

def create_interface():
    """Create Gradio interface"""
    
    def generate_video_interface(prompt, model_id, num_frames, fps, num_inference_steps, guidance_scale, seed):
        if not prompt.strip():
            return None, "Please enter a prompt"
        
        return generator.generate_video(
            prompt=prompt,
            model_id=model_id,
            num_frames=num_frames,
            fps=fps,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            seed=seed
        )
    
    # Create interface
    with gr.Blocks(title="Text-to-Video Generator", theme=gr.themes.Soft()) as interface:
        gr.Markdown("# Text-to-Video Generation with Hugging Face Models")
        gr.Markdown("Generate videos from text descriptions using state-of-the-art AI models")
        
        with gr.Row():
            with gr.Column(scale=2):
                # Input section
                with gr.Group():
                    gr.Markdown("## Input Parameters")
                    
                    prompt = gr.Textbox(
                        label="Text Prompt",
                        placeholder="Enter your video description here...",
                        lines=3,
                        max_lines=5
                    )
                    
                    model_id = gr.Dropdown(
                        choices=generator.get_available_models(),
                        value=generator.get_available_models()[0],
                        label="Model",
                        info="Select the model to use for generation"
                    )
                    
                    with gr.Row():
                        num_frames = gr.Slider(
                            minimum=8,
                            maximum=24,
                            value=16,
                            step=1,
                            label="Number of Frames",
                            info="More frames = longer video"
                        )
                        
                        fps = gr.Slider(
                            minimum=4,
                            maximum=12,
                            value=8,
                            step=1,
                            label="FPS",
                            info="Frames per second"
                        )
                    
                    with gr.Row():
                        num_inference_steps = gr.Slider(
                            minimum=10,
                            maximum=50,
                            value=25,
                            step=1,
                            label="Inference Steps",
                            info="More steps = better quality but slower"
                        )
                        
                        guidance_scale = gr.Slider(
                            minimum=1.0,
                            maximum=20.0,
                            value=7.5,
                            step=0.5,
                            label="Guidance Scale",
                            info="Higher values = more prompt adherence"
                        )
                    
                    seed = gr.Number(
                        label="Seed (Optional)",
                        value=None,
                        info="Set for reproducible results"
                    )
                    
                    generate_btn = gr.Button("Generate Video", variant="primary", size="lg")
                
                # Output section
                with gr.Group():
                    gr.Markdown("## Output")
                    status_text = gr.Textbox(label="Status", interactive=False)
                    video_output = gr.Video(label="Generated Video")
            
            with gr.Column(scale=1):
                # Model information
                with gr.Group():
                    gr.Markdown("## Model Information")
                    model_info = gr.JSON(label="Current Model Details")
                
                # Examples
                with gr.Group():
                    gr.Markdown("## Example Prompts")
                    examples = [
                        ["A beautiful sunset over the ocean with waves crashing on the shore"],
                        ["A cat playing with a ball of yarn in a cozy living room"],
                        ["A futuristic city with flying cars and neon lights"],
                        ["A butterfly emerging from a cocoon in a garden"],
                        ["A rocket launching into space with fire and smoke"]
                    ]
                    gr.Examples(
                        examples=examples,
                        inputs=prompt,
                        label="Try these examples"
                    )
        
        # Event handlers
        generate_btn.click(
            fn=generate_video_interface,
            inputs=[prompt, model_id, num_frames, fps, num_inference_steps, guidance_scale, seed],
            outputs=[video_output, status_text]
        )
        
        # Update model info when model changes
        def update_model_info(model_id):
            info = generator.get_model_info(model_id)
            return info
        
        model_id.change(
            fn=update_model_info,
            inputs=model_id,
            outputs=model_info
        )
        
        # Load initial model info
        interface.load(lambda: generator.get_model_info(generator.get_available_models()[0]), outputs=model_info)
    
    return interface

if __name__ == "__main__":
    # Create and launch the interface
    interface = create_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_error=True
    )