Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,30 +1,27 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from ultralytics import YOLO
|
| 3 |
-
import ai_gym
|
| 4 |
import cv2
|
| 5 |
import tempfile
|
| 6 |
-
import
|
| 7 |
|
| 8 |
-
|
| 9 |
-
model = YOLO("yolov8n-pose.pt")
|
| 10 |
-
|
| 11 |
-
# Initialize AIGym object
|
| 12 |
-
gym_object = ai_gym.AIGym()
|
| 13 |
-
|
| 14 |
-
def count_workouts(input_video):
|
| 15 |
-
# Temporary file to store output video
|
| 16 |
-
output_path = tempfile.NamedTemporaryFile(suffix='.avi').name
|
| 17 |
-
|
| 18 |
-
# Open input video
|
| 19 |
-
cap = cv2.VideoCapture(input_video.name)
|
| 20 |
assert cap.isOpened(), "Error reading video file"
|
| 21 |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
video_writer = cv2.VideoWriter(
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
frame_count = 0
|
| 30 |
while cap.isOpened():
|
|
@@ -33,57 +30,25 @@ def count_workouts(input_video):
|
|
| 33 |
print("Video frame is empty or video processing has been successfully completed.")
|
| 34 |
break
|
| 35 |
frame_count += 1
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
cap.release()
|
| 41 |
-
video_writer.release()
|
| 42 |
cv2.destroyAllWindows()
|
| 43 |
|
| 44 |
-
return
|
| 45 |
-
|
| 46 |
-
# Gradio Interface
|
| 47 |
-
inputs = gr.inputs.Video(label="Upload a video")
|
| 48 |
-
outputs = gr.outputs.Video(label="Output Video")
|
| 49 |
-
|
| 50 |
-
gr.Interface(count_workouts, inputs, outputs, title="Workout Counter",
|
| 51 |
-
description="Upload a video and get a video with workout counting annotations.").launch()
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
# from ultralytics import YOLO
|
| 56 |
-
# from ultralytics.solutions import ai_gym
|
| 57 |
-
# import cv2
|
| 58 |
-
|
| 59 |
-
# model = YOLO("yolov8n-pose.pt")
|
| 60 |
-
# cap = cv2.VideoCapture("pullups.mp4")
|
| 61 |
-
# assert cap.isOpened(), "Error reading video file"
|
| 62 |
-
# w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
| 63 |
-
|
| 64 |
-
# video_writer = cv2.VideoWriter("output_video.avi",
|
| 65 |
-
# cv2.VideoWriter_fourcc(*'mp4v'),
|
| 66 |
-
# fps,
|
| 67 |
-
# (w, h))
|
| 68 |
-
|
| 69 |
-
# gym_object = ai_gym.AIGym() # init AI GYM module
|
| 70 |
-
# gym_object.set_args(line_thickness=2,
|
| 71 |
-
# view_img=False, # Set view_img to False to prevent displaying the video in real-time
|
| 72 |
-
# pose_type="pushup",
|
| 73 |
-
# kpts_to_check=[6, 8, 10])
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
# print("Video frame is empty or video processing has been successfully completed.")
|
| 80 |
-
# break
|
| 81 |
-
# frame_count += 1
|
| 82 |
-
# results = model.track(im0, verbose=False) # Tracking recommended
|
| 83 |
-
# #results = model.predict(im0) # Prediction also supported
|
| 84 |
-
# im0 = gym_object.start_counting(im0, results, frame_count)
|
| 85 |
-
# video_writer.write(im0)
|
| 86 |
|
| 87 |
-
#
|
| 88 |
-
|
| 89 |
-
# cv2.destroyAllWindows()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from ultralytics import YOLO
|
| 3 |
+
from ultralytics.solutions import ai_gym
|
| 4 |
import cv2
|
| 5 |
import tempfile
|
| 6 |
+
from PIL import Image
|
| 7 |
|
| 8 |
+
def process(video_path):
|
| 9 |
+
model = YOLO("yolov8n-pose.pt")
|
| 10 |
+
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
assert cap.isOpened(), "Error reading video file"
|
| 12 |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
| 13 |
|
| 14 |
+
temp_dir = tempfile.mkdtemp() # Create a temporary directory to store processed frames
|
| 15 |
+
video_writer = cv2.VideoWriter("output_video.mp4",
|
| 16 |
+
cv2.VideoWriter_fourcc(*'mp4v'),
|
| 17 |
+
fps,
|
| 18 |
+
(w, h))
|
| 19 |
+
|
| 20 |
+
gym_object = ai_gym.AIGym() # init AI GYM module
|
| 21 |
+
gym_object.set_args(line_thickness=2,
|
| 22 |
+
view_img=False, # Set view_img to False to prevent displaying the video in real-time
|
| 23 |
+
pose_type="pushup",
|
| 24 |
+
kpts_to_check=[6, 8, 10])
|
| 25 |
|
| 26 |
frame_count = 0
|
| 27 |
while cap.isOpened():
|
|
|
|
| 30 |
print("Video frame is empty or video processing has been successfully completed.")
|
| 31 |
break
|
| 32 |
frame_count += 1
|
| 33 |
+
if frame_count % 5 == 0: # Process every 5th frame
|
| 34 |
+
results = model.track(im0, verbose=False) # Tracking recommended
|
| 35 |
+
im0 = gym_object.start_counting(im0, results, frame_count)
|
| 36 |
+
# Save processed frame as an image in the temporary directory
|
| 37 |
+
cv2.imwrite(f"{temp_dir}/{frame_count}.jpg", im0)
|
| 38 |
+
|
| 39 |
+
# Use PIL to create the final video from the processed frames
|
| 40 |
+
images = [Image.open(f"{temp_dir}/{i}.jpg") for i in range(1, frame_count + 1)]
|
| 41 |
+
images[0].save("output_video.mp4", save_all=True, append_images=images[1:], duration=1000/fps, loop=0)
|
| 42 |
|
| 43 |
cap.release()
|
|
|
|
| 44 |
cv2.destroyAllWindows()
|
| 45 |
|
| 46 |
+
return "output_video.mp4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# Create the Gradio demo
|
| 49 |
+
demo = gr.Interface(fn=process,
|
| 50 |
+
inputs=gr.Video(label='Input Video'),
|
| 51 |
+
outputs=gr.Video(label='Processed Video'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
# Launch the demo!
|
| 54 |
+
demo.launch(show_api=False)
|
|
|