Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -59,17 +59,20 @@ class VideoProcessor:
|
|
| 59 |
self.press_stage = None
|
| 60 |
self.squat_stage = None
|
| 61 |
self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
| 62 |
-
|
| 63 |
-
|
| 64 |
def process_video(self, video_file):
|
| 65 |
# Get the filename from the file object
|
| 66 |
filename = "temp_video.mp4"
|
| 67 |
# Create a temporary file to write the contents of the uploaded video file
|
| 68 |
with open(filename, 'wb') as temp_file:
|
| 69 |
temp_file.write(video_file.read())
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
cap = cv2.VideoCapture(filename)
|
| 72 |
-
|
|
|
|
|
|
|
| 73 |
while cap.isOpened():
|
| 74 |
ret, frame = cap.read()
|
| 75 |
if not ret:
|
|
@@ -77,11 +80,15 @@ class VideoProcessor:
|
|
| 77 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 78 |
results = self.pose.process(frame_rgb)
|
| 79 |
processed_frame = self.process_frame(frame, results)
|
| 80 |
-
|
| 81 |
cap.release()
|
|
|
|
|
|
|
| 82 |
# Remove the temporary file
|
| 83 |
os.remove(filename)
|
| 84 |
-
|
|
|
|
|
|
|
| 85 |
|
| 86 |
def process_frame(self, frame, results):
|
| 87 |
# Process the frame using the `process` function
|
|
@@ -89,15 +96,7 @@ class VideoProcessor:
|
|
| 89 |
return processed_frame
|
| 90 |
|
| 91 |
def process(self, image):
|
| 92 |
-
|
| 93 |
-
Function to process the video frame and run the fitness trainer AI
|
| 94 |
-
|
| 95 |
-
Args:
|
| 96 |
-
image (numpy array): input image from the video
|
| 97 |
-
|
| 98 |
-
Returns:
|
| 99 |
-
numpy array: processed image with keypoint detection and fitness activity classification visualized
|
| 100 |
-
"""
|
| 101 |
# Pose detection model
|
| 102 |
image.flags.writeable = False
|
| 103 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
@@ -118,20 +117,25 @@ class VideoProcessor:
|
|
| 118 |
|
| 119 |
self.current_action = self.actions[np.argmax(res)]
|
| 120 |
confidence = np.max(res)
|
|
|
|
|
|
|
| 121 |
|
| 122 |
# Erase current action variable if no probability is above threshold
|
| 123 |
if confidence < self.threshold:
|
| 124 |
self.current_action = ''
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
# Viz probabilities
|
| 127 |
image = self.prob_viz(res, image)
|
| 128 |
|
| 129 |
# Count reps
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
pass
|
| 135 |
|
| 136 |
# Display graphical information
|
| 137 |
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
|
|
@@ -157,90 +161,105 @@ class VideoProcessor:
|
|
| 157 |
def count_reps(self, image, landmarks, mp_pose):
|
| 158 |
"""
|
| 159 |
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
|
| 160 |
-
|
| 161 |
"""
|
| 162 |
-
|
| 163 |
if self.current_action == 'curl':
|
| 164 |
# Get coords
|
| 165 |
-
shoulder = self.get_coordinates(landmarks, mp_pose, '
|
| 166 |
-
elbow = self.get_coordinates(landmarks, mp_pose, '
|
| 167 |
-
wrist = self.get_coordinates(landmarks, mp_pose, '
|
| 168 |
-
|
| 169 |
# calculate elbow angle
|
| 170 |
angle = self.calculate_angle(shoulder, elbow, wrist)
|
| 171 |
-
|
| 172 |
# curl counter logic
|
|
|
|
| 173 |
if angle < 30:
|
| 174 |
-
self.curl_stage = "up"
|
| 175 |
-
if angle > 140 and self.curl_stage =='up':
|
| 176 |
-
self.curl_stage="down"
|
| 177 |
-
self.curl_counter +=1
|
|
|
|
| 178 |
self.press_stage = None
|
| 179 |
self.squat_stage = None
|
| 180 |
-
|
| 181 |
# Viz joint angle
|
| 182 |
self.viz_joint_angle(image, angle, elbow)
|
| 183 |
-
|
| 184 |
-
elif self.current_action == 'press':
|
| 185 |
# Get coords
|
| 186 |
-
shoulder = self.get_coordinates(landmarks, mp_pose, '
|
| 187 |
-
elbow = self.get_coordinates(landmarks, mp_pose, '
|
| 188 |
-
wrist = self.get_coordinates(landmarks, mp_pose, '
|
| 189 |
|
| 190 |
# Calculate elbow angle
|
| 191 |
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
|
| 192 |
-
|
| 193 |
# Compute distances between joints
|
| 194 |
-
shoulder2elbow_dist = abs(math.dist(shoulder,elbow))
|
| 195 |
-
shoulder2wrist_dist = abs(math.dist(shoulder,wrist))
|
| 196 |
-
|
| 197 |
# Press counter logic
|
|
|
|
|
|
|
|
|
|
| 198 |
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
|
| 199 |
self.press_stage = "up"
|
| 200 |
-
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage =='up'):
|
| 201 |
-
self.press_stage='down'
|
| 202 |
self.press_counter += 1
|
|
|
|
|
|
|
|
|
|
| 203 |
self.curl_stage = None
|
| 204 |
self.squat_stage = None
|
| 205 |
-
|
| 206 |
# Viz joint angle
|
| 207 |
self.viz_joint_angle(image, elbow_angle, elbow)
|
| 208 |
-
|
| 209 |
elif self.current_action == 'squat':
|
| 210 |
# Get coords
|
| 211 |
# left side
|
| 212 |
-
left_shoulder = self.get_coordinates(landmarks, mp_pose, '
|
| 213 |
-
left_hip = self.get_coordinates(landmarks, mp_pose, '
|
| 214 |
-
left_knee = self.get_coordinates(landmarks, mp_pose, '
|
| 215 |
-
left_ankle = self.get_coordinates(landmarks, mp_pose, '
|
| 216 |
# right side
|
| 217 |
-
right_shoulder = self.get_coordinates(landmarks, mp_pose, '
|
| 218 |
-
right_hip = self.get_coordinates(landmarks, mp_pose, '
|
| 219 |
-
right_knee = self.get_coordinates(landmarks, mp_pose, '
|
| 220 |
-
right_ankle = self.get_coordinates(landmarks, mp_pose, '
|
| 221 |
-
|
| 222 |
# Calculate knee angles
|
| 223 |
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
|
| 224 |
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
|
| 225 |
-
|
| 226 |
# Calculate hip angles
|
| 227 |
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
|
| 228 |
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
|
| 229 |
-
|
| 230 |
# Squat counter logic
|
| 231 |
thr = 165
|
| 232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
self.squat_stage = "down"
|
| 234 |
-
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (
|
| 235 |
-
|
|
|
|
| 236 |
self.squat_counter += 1
|
|
|
|
| 237 |
self.curl_stage = None
|
| 238 |
self.press_stage = None
|
| 239 |
-
|
| 240 |
# Viz joint angles
|
| 241 |
self.viz_joint_angle(image, left_knee_angle, left_knee)
|
| 242 |
self.viz_joint_angle(image, left_hip_angle, left_hip)
|
| 243 |
-
|
| 244 |
else:
|
| 245 |
pass
|
| 246 |
return
|
|
@@ -258,15 +277,48 @@ class VideoProcessor:
|
|
| 258 |
|
| 259 |
return output_frame
|
| 260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
# Define Streamlit app
|
| 262 |
def main():
|
| 263 |
st.title("Real-time Exercise Detection")
|
| 264 |
video_file = st.file_uploader("Upload a video file", type=["mp4", "avi"])
|
| 265 |
if video_file is not None:
|
| 266 |
video_processor = VideoProcessor()
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
if __name__ == "__main__":
|
| 272 |
main()
|
|
|
|
| 59 |
self.press_stage = None
|
| 60 |
self.squat_stage = None
|
| 61 |
self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
| 62 |
+
|
|
|
|
| 63 |
def process_video(self, video_file):
|
| 64 |
# Get the filename from the file object
|
| 65 |
filename = "temp_video.mp4"
|
| 66 |
# Create a temporary file to write the contents of the uploaded video file
|
| 67 |
with open(filename, 'wb') as temp_file:
|
| 68 |
temp_file.write(video_file.read())
|
| 69 |
+
|
| 70 |
+
# Process the video and save the processed video to a new file
|
| 71 |
+
output_filename = "processed_video.mp4"
|
| 72 |
cap = cv2.VideoCapture(filename)
|
| 73 |
+
frame_width = int(cap.get(3))
|
| 74 |
+
frame_height = int(cap.get(4))
|
| 75 |
+
out = cv2.VideoWriter(output_filename, cv2.VideoWriter_fourcc(*'h264'), 30, (frame_width, frame_height))
|
| 76 |
while cap.isOpened():
|
| 77 |
ret, frame = cap.read()
|
| 78 |
if not ret:
|
|
|
|
| 80 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 81 |
results = self.pose.process(frame_rgb)
|
| 82 |
processed_frame = self.process_frame(frame, results)
|
| 83 |
+
out.write(processed_frame)
|
| 84 |
cap.release()
|
| 85 |
+
out.release()
|
| 86 |
+
|
| 87 |
# Remove the temporary file
|
| 88 |
os.remove(filename)
|
| 89 |
+
|
| 90 |
+
# Return the path to the processed video file
|
| 91 |
+
return output_filename
|
| 92 |
|
| 93 |
def process_frame(self, frame, results):
|
| 94 |
# Process the frame using the `process` function
|
|
|
|
| 96 |
return processed_frame
|
| 97 |
|
| 98 |
def process(self, image):
|
| 99 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
# Pose detection model
|
| 101 |
image.flags.writeable = False
|
| 102 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
|
| 117 |
|
| 118 |
self.current_action = self.actions[np.argmax(res)]
|
| 119 |
confidence = np.max(res)
|
| 120 |
+
print("confidence", confidence) # Debug print statement
|
| 121 |
+
print("current action" , self.current_action)
|
| 122 |
|
| 123 |
# Erase current action variable if no probability is above threshold
|
| 124 |
if confidence < self.threshold:
|
| 125 |
self.current_action = ''
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
print("current action" , self.current_action)
|
| 129 |
+
|
| 130 |
|
| 131 |
# Viz probabilities
|
| 132 |
image = self.prob_viz(res, image)
|
| 133 |
|
| 134 |
# Count reps
|
| 135 |
+
|
| 136 |
+
landmarks = results.pose_landmarks.landmark
|
| 137 |
+
self.count_reps(image, landmarks, mp_pose)
|
| 138 |
+
|
|
|
|
| 139 |
|
| 140 |
# Display graphical information
|
| 141 |
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
|
|
|
|
| 161 |
def count_reps(self, image, landmarks, mp_pose):
|
| 162 |
"""
|
| 163 |
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
|
| 164 |
+
|
| 165 |
"""
|
| 166 |
+
|
| 167 |
if self.current_action == 'curl':
|
| 168 |
# Get coords
|
| 169 |
+
shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
|
| 170 |
+
elbow = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ELBOW')
|
| 171 |
+
wrist = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'WRIST')
|
| 172 |
+
|
| 173 |
# calculate elbow angle
|
| 174 |
angle = self.calculate_angle(shoulder, elbow, wrist)
|
| 175 |
+
|
| 176 |
# curl counter logic
|
| 177 |
+
print("Curl Angle:", angle) # Debug print statement
|
| 178 |
if angle < 30:
|
| 179 |
+
self.curl_stage = "up"
|
| 180 |
+
if angle > 140 and self.curl_stage == 'up':
|
| 181 |
+
self.curl_stage = "down"
|
| 182 |
+
self.curl_counter += 1
|
| 183 |
+
print("count:",self.curl_counter)
|
| 184 |
self.press_stage = None
|
| 185 |
self.squat_stage = None
|
| 186 |
+
|
| 187 |
# Viz joint angle
|
| 188 |
self.viz_joint_angle(image, angle, elbow)
|
| 189 |
+
|
| 190 |
+
elif self.current_action == 'press':
|
| 191 |
# Get coords
|
| 192 |
+
shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
|
| 193 |
+
elbow = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ELBOW')
|
| 194 |
+
wrist = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'WRIST')
|
| 195 |
|
| 196 |
# Calculate elbow angle
|
| 197 |
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
|
| 198 |
+
print(shoulder, elbow, wrist)
|
| 199 |
# Compute distances between joints
|
| 200 |
+
shoulder2elbow_dist = abs(math.dist(shoulder, elbow))
|
| 201 |
+
shoulder2wrist_dist = abs(math.dist(shoulder, wrist))
|
| 202 |
+
|
| 203 |
# Press counter logic
|
| 204 |
+
print("Press Angle:", elbow_angle) # Debug print statement
|
| 205 |
+
print("Shoulder to Elbow Distance:", shoulder2elbow_dist) # Debug print statement
|
| 206 |
+
print("Shoulder to Wrist Distance:", shoulder2wrist_dist) # Debug print statement
|
| 207 |
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
|
| 208 |
self.press_stage = "up"
|
| 209 |
+
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage == 'up'):
|
| 210 |
+
self.press_stage = 'down'
|
| 211 |
self.press_counter += 1
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
print("count:",self.press_counter)
|
| 215 |
self.curl_stage = None
|
| 216 |
self.squat_stage = None
|
| 217 |
+
|
| 218 |
# Viz joint angle
|
| 219 |
self.viz_joint_angle(image, elbow_angle, elbow)
|
| 220 |
+
|
| 221 |
elif self.current_action == 'squat':
|
| 222 |
# Get coords
|
| 223 |
# left side
|
| 224 |
+
left_shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
|
| 225 |
+
left_hip = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'HIP')
|
| 226 |
+
left_knee = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'KNEE')
|
| 227 |
+
left_ankle = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ANKLE')
|
| 228 |
# right side
|
| 229 |
+
right_shoulder = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'SHOULDER')
|
| 230 |
+
right_hip = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'HIP')
|
| 231 |
+
right_knee = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'KNEE')
|
| 232 |
+
right_ankle = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'ANKLE')
|
| 233 |
+
|
| 234 |
# Calculate knee angles
|
| 235 |
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
|
| 236 |
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
|
| 237 |
+
|
| 238 |
# Calculate hip angles
|
| 239 |
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
|
| 240 |
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
|
| 241 |
+
|
| 242 |
# Squat counter logic
|
| 243 |
thr = 165
|
| 244 |
+
print("Left Knee Angle:", left_knee_angle) # Debug print statement
|
| 245 |
+
print("Right Knee Angle:", right_knee_angle) # Debug print statement
|
| 246 |
+
print("Left Hip Angle:", left_hip_angle) # Debug print statement
|
| 247 |
+
print("Right Hip Angle:", right_hip_angle) # Debug print statement
|
| 248 |
+
if (left_knee_angle < thr) and (right_knee_angle < thr) and (left_hip_angle < thr) and (
|
| 249 |
+
right_hip_angle < thr):
|
| 250 |
self.squat_stage = "down"
|
| 251 |
+
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (
|
| 252 |
+
right_hip_angle > thr) and (self.squat_stage == 'down'):
|
| 253 |
+
self.squat_stage = 'up'
|
| 254 |
self.squat_counter += 1
|
| 255 |
+
print("count:",self.squat_counter)
|
| 256 |
self.curl_stage = None
|
| 257 |
self.press_stage = None
|
| 258 |
+
|
| 259 |
# Viz joint angles
|
| 260 |
self.viz_joint_angle(image, left_knee_angle, left_knee)
|
| 261 |
self.viz_joint_angle(image, left_hip_angle, left_hip)
|
| 262 |
+
|
| 263 |
else:
|
| 264 |
pass
|
| 265 |
return
|
|
|
|
| 277 |
|
| 278 |
return output_frame
|
| 279 |
|
| 280 |
+
def get_coordinates(self, landmarks, mp_pose, side, part):
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
coord = getattr(mp_pose.PoseLandmark,side.upper()+"_"+part.upper())
|
| 284 |
+
x_coord_val = landmarks[coord.value].x
|
| 285 |
+
y_coord_val = landmarks[coord.value].y
|
| 286 |
+
return [x_coord_val, y_coord_val]
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def calculate_angle(self, a, b, c):
|
| 295 |
+
a = np.array(a)
|
| 296 |
+
b = np.array(b)
|
| 297 |
+
c = np.array(c)
|
| 298 |
+
radians = math.atan2(c[1]-b[1], c[0]-b[0]) - math.atan2(a[1]-b[1], a[0]-b[0])
|
| 299 |
+
angle = np.abs(radians*180.0/np.pi)
|
| 300 |
+
if angle > 180.0:
|
| 301 |
+
angle = 360 - angle
|
| 302 |
+
return angle
|
| 303 |
+
|
| 304 |
+
def viz_joint_angle(self, image, angle, joint):
|
| 305 |
+
cv2.putText(image, str(round(angle, 2)),
|
| 306 |
+
tuple(np.multiply(joint, [640, 480]).astype(int)),
|
| 307 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2, cv2.LINE_AA)
|
| 308 |
+
|
| 309 |
# Define Streamlit app
|
| 310 |
def main():
|
| 311 |
st.title("Real-time Exercise Detection")
|
| 312 |
video_file = st.file_uploader("Upload a video file", type=["mp4", "avi"])
|
| 313 |
if video_file is not None:
|
| 314 |
video_processor = VideoProcessor()
|
| 315 |
+
|
| 316 |
+
output_video = video_processor.process_video(video_file)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
video_file = open(output_video, 'rb')
|
| 320 |
+
video_bytes = video_file.read()
|
| 321 |
+
st.video(video_bytes)
|
| 322 |
|
| 323 |
if __name__ == "__main__":
|
| 324 |
main()
|