Spaces:
Runtime error
Runtime error
File size: 19,830 Bytes
629b314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# Copyright (c) 2025 Tsinghua Univ. (authors: Xingchen Song)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Example Usage: see README.md
"""
import argparse
import json
import os
import random
import sys
import time
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
import numpy as np
import onnxruntime
import s3tokenizer
import torch
import torch.distributed as dist
import torchaudio
import torchaudio.compliance.kaldi as kaldi
from torch.utils.data import DataLoader, Dataset, DistributedSampler
from tqdm import tqdm
from flashcosyvoice.config import Config, CosyVoice2LLMConfig, SamplingParams
from flashcosyvoice.cosyvoice2 import CosyVoice2
from flashcosyvoice.utils.audio import mel_spectrogram
def set_all_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def save_file_async(
wav, prompt_speech_tokens, generated_speech_tokens,
info, timing_stats
):
"""Save audio asynchronously."""
try:
os.makedirs(os.path.dirname(info['wav']), exist_ok=True)
if wav is not None:
wav = wav.cpu()
torchaudio.save(info['wav'], wav, 24000)
duration = wav.shape[-1] / 24000.0
rtf = ((timing_stats['dataloader_time'] + timing_stats['model_inference_time']) / timing_stats['batch_size']) / duration
timing_stats['rtf'] = rtf
else:
duration = 0.0
info['timing_stats'] = timing_stats
info['prompt_speech_tokens'] = prompt_speech_tokens
info['generated_speech_tokens'] = generated_speech_tokens
with open(f"{info['wav'].replace('.wav', '.json')}", "w") as f:
json.dump(info, f, ensure_ascii=False, indent=4)
return duration
except Exception as e:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [ERROR] - Error saving audio {info.get('key', 'unknown')}: {e}")
return 0.0
class AudioDataset(Dataset):
def __init__(self, text_norm, text_tokenizer, data_list, model_config: Config):
self.datas = []
self.text_norm = text_norm
self.model_config = model_config
"""Example data_list:
```
{"key": "uttid_1", "prompt_text": "δ½ ε₯½οΌζζ―ε°ζγ", "text": "δ½ ε₯½οΌζζ―ε°ηΊ’γ", "prompt_wav": "/mnt/data/audio/00000000.wav", "wav": "/mnt/data/audio_synthetic/uttid_1.wav"}
{"key": "uttid_2", "prompt_text": "δ½ ε₯½οΌζζ―ε°ηΊ’γ", "text": "δ½ ε₯½οΌζζ―ε°ζγ", "prompt_wav": "/mnt/data/audio/00000001.wav", "wav": "/mnt/data/audio_synthetic/uttid_2.wav"}
```
Note:
- `key` is the key of this sample.
- `prompt_text` is the text used for prompt.
- `text` is the text used for generating real audio.
- `prompt_wav` is the audio used for prompt.
- `wav` is the path to the generated audio to be saved (we highly recommend to pre-define the save path before running the script).
"""
missing = 0
with open(data_list, 'r', encoding='utf-8') as f:
lines = f.readlines()
total_lines = len(lines)
if torch.distributed.get_node_local_rank() == 0:
iterator = tqdm(lines, desc='Loading data')
else:
iterator = lines
for line in iterator:
data = json.loads(line.strip())
valid = True
for k in ['key', 'prompt_text', 'text', 'prompt_wav']:
if k not in data:
valid = False
break
if data[k] is None:
valid = False
break
if not os.path.exists(data['prompt_wav']):
valid = False
if valid:
self.datas.append(data)
else:
missing += 1
if torch.distributed.get_node_local_rank() == 0:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f'[{timestamp}] - [INFO] - Loaded {total_lines} lines, found {missing} missing lines, total valid lines == {len(self.datas)}.')
self.text_tokenizer = text_tokenizer
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
self.spk_model = onnxruntime.InferenceSession(f"{self.model_config.model}/campplus.onnx", sess_options=option,
providers=["CPUExecutionProvider"])
def __len__(self):
return len(self.datas)
def __getitem__(self, idx):
data = self.datas[idx]
try:
# 1. feature for s3tokenizer
audio = s3tokenizer.load_audio(data['prompt_wav'], sr=16000) # [T]
log_mel = s3tokenizer.log_mel_spectrogram(audio) # [num_mels, T]
# 2. feature for speaker embedding
spk_feat = kaldi.fbank(audio.unsqueeze(0), num_mel_bins=80, dither=0, sample_frequency=16000)
spk_feat = spk_feat - spk_feat.mean(dim=0, keepdim=True)
spk_emb = self.spk_model.run(
None, {self.spk_model.get_inputs()[0].name: spk_feat.unsqueeze(dim=0).cpu().numpy()}
)[0].flatten().tolist()
# 3. feature for flow
audio, sample_rate = torchaudio.load(data['prompt_wav'], backend='soundfile')
audio = audio.mean(dim=0, keepdim=True) # [1, T]
if sample_rate != 24000:
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=24000)(audio)
mel = mel_spectrogram(audio).transpose(1, 2).squeeze(0) # [T, num_mels]
mel_len = mel.shape[0]
# 4. feature for llm
if self.text_norm is not None:
prompt_texts = [i["text"] for i in json.loads(self.text_norm.do_voicegen_frd(data['prompt_text'].strip()))["sentences"]]
prompt_text = ''.join(prompt_texts)
texts = [i["text"] for i in json.loads(self.text_norm.do_voicegen_frd(data['text'].strip()))["sentences"]]
text = ''.join(texts)
else:
prompt_text = data['prompt_text']
text = data['text']
prompt_text_ids = self.text_tokenizer.encode(prompt_text)
prompt_text_ids = [i + self.model_config.hf_config.speech_vocab_size + 2 for i in prompt_text_ids]
text_ids = self.text_tokenizer.encode(text)
text_ids = [i + self.model_config.hf_config.speech_vocab_size + 2 for i in text_ids]
item = {
"prompt_text_tokens": prompt_text_ids, "text_tokens": text_ids,
"spk_emb": spk_emb, "mel": mel, "mel_len": mel_len, "log_mel": log_mel, "info": data,
"min_tokens": len(text_ids) * self.model_config.min_token_text_ratio,
"max_tokens": len(text_ids) * self.model_config.max_token_text_ratio,
}
except Exception as e:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [WARNING] - Error processing data item {data.get('key', idx)}: {e}")
return None
return item
def collate_fn(batch):
prompt_mels_for_llm = [item["log_mel"] for item in batch if item is not None]
prompt_mels_for_llm, prompt_mels_lens_for_llm = s3tokenizer.padding(prompt_mels_for_llm) # [B, num_mels=128, T]
prompt_text_tokens_for_llm = [item["prompt_text_tokens"] for item in batch if item is not None]
text_tokens_for_llm = [item["text_tokens"] for item in batch if item is not None]
prompt_mels_for_flow = [item["mel"] for item in batch if item is not None]
prompt_mels_for_flow = torch.nn.utils.rnn.pad_sequence(prompt_mels_for_flow, batch_first=True, padding_value=0) # [B, T', num_mels=80]
prompt_mels_lens_for_flow = [item["mel_len"] for item in batch if item is not None]
prompt_mels_lens_for_flow = torch.tensor(prompt_mels_lens_for_flow)
spk_emb_for_flow = [item["spk_emb"] for item in batch if item is not None]
spk_emb_for_flow = torch.tensor(spk_emb_for_flow)
sampling_params = [SamplingParams(min_tokens=item["min_tokens"], max_tokens=item["max_tokens"], use_ras=True) for item in batch if item is not None]
infos = [item["info"] for item in batch if item is not None]
return {
"prompt_mels_for_llm": prompt_mels_for_llm,
"prompt_mels_lens_for_llm": prompt_mels_lens_for_llm,
"prompt_text_tokens_for_llm": prompt_text_tokens_for_llm,
"text_tokens_for_llm": text_tokens_for_llm,
"prompt_mels_for_flow": prompt_mels_for_flow,
"prompt_mels_lens_for_flow": prompt_mels_lens_for_flow,
"spk_emb_for_flow": spk_emb_for_flow,
"sampling_params": sampling_params,
"infos": infos,
}
def init_distributed():
world_size = int(os.environ.get('WORLD_SIZE', 1))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
rank = int(os.environ.get('RANK', 0))
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f'[{timestamp}] - [INFO] - Inference on multiple gpus, this gpu {local_rank}, rank {rank}, world_size {world_size}')
torch.cuda.set_device(local_rank)
dist.init_process_group("nccl")
return world_size, local_rank, rank
def get_args():
parser = argparse.ArgumentParser(description='FlashCosyVoice')
parser.add_argument('--model_path',
required=True,
type=str,
help='model path')
parser.add_argument('--data_list',
required=True,
type=str,
help='data list')
parser.add_argument('--batch_size_dataloader',
required=True,
type=int,
help='batch size (per-device) for dataloading')
parser.add_argument('--batch_size_flow',
required=True,
type=int,
help='batch size (per-device) for flow-matching')
parser.add_argument('--num_workers',
type=int,
default=4,
help='workers for dataloader')
parser.add_argument('--prefetch',
type=int,
default=5,
help='prefetch for dataloader')
parser.add_argument('--enable_tn',
action='store_true',
help='enable text normalization')
parser.add_argument('--only_llm',
action='store_true',
help='only generate speech tokens from llm')
parser.add_argument('--fp16_flow',
action='store_true',
help='enable fp16 flow')
parser.add_argument('--seed',
type=int,
default=1986,
help='random seed for generation')
args = parser.parse_args()
return args
def main():
args = get_args()
if args.enable_tn:
# Check python version, if == 3.10, use ttsfrd
if sys.version_info.major == 3 and sys.version_info.minor == 10:
# Check if ttsfrd is installed
try:
import ttsfrd
from cosyvoice_ttsfrd import get_resource_path
except ImportError as e:
raise ImportError("ttsfrd is not installed, please install it first, see `https://github.com/xingchensong/CosyVoice-ttsfrd` for installation guide.") from e
text_norm = ttsfrd.TtsFrontendEngine()
text_norm.initialize(get_resource_path())
text_norm.set_lang_type('pinyinvg')
else:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [WARNING] - Only python 3.10 is supported for ttsfrd, see `https://github.com/xingchensong/CosyVoice-ttsfrd` for more info. Setting enable_tn to False...")
# TODO: maybe we should use wetext if python version is not 3.10?
args.enable_tn = False
text_norm = None
else:
text_norm = None
assert (torch.cuda.is_available())
world_size, local_rank, rank = init_distributed()
config = Config(model=args.model_path, enforce_eager=True, tensor_parallel_size=1,
max_num_seqs=args.batch_size_dataloader,
hf_config=CosyVoice2LLMConfig(fp16_flow=args.fp16_flow), rank=local_rank)
model = CosyVoice2(config)
set_all_random_seed(args.seed)
dataset = AudioDataset(text_norm, model.llm.tokenizer, args.data_list, config)
sampler = DistributedSampler(dataset,
num_replicas=world_size,
rank=rank)
dataloader = DataLoader(dataset, batch_size=args.batch_size_dataloader, num_workers=args.num_workers, pin_memory=True,
sampler=sampler, shuffle=False, prefetch_factor=args.prefetch, collate_fn=collate_fn)
total_steps = len(dataset)
if local_rank == 0:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - {args}")
progress_bar = tqdm(total=total_steps, desc="Processing samples", unit="wav",
position=0, leave=True, dynamic_ncols=True)
cpu_counts = os.cpu_count()
executor = ThreadPoolExecutor(max_workers=min(args.batch_size_dataloader, cpu_counts // 8))
pending_futures = []
dataloader_iter = iter(dataloader)
succeed_duration = 0.01 # avoid division by zero
start_time = time.time()
estimated_total_wavs = 0
succeed_wavs = 0
failed_wavs = 0
last_print_time = start_time
while True:
try:
dataloader_start = time.time()
batch = next(dataloader_iter)
dataloader_time = time.time() - dataloader_start
if len(batch['infos']) == 0:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [WARNING] - rank {rank} of {world_size}: No valid batch found, skipping this batch...")
continue
model_start = time.time()
results_dict, timing_stats = model(**batch, batch_size_flow=args.batch_size_flow,
only_llm=args.only_llm)
model_time = time.time() - model_start
estimated_total_wavs += len(results_dict['generated_wavs'])
timing_stats['dataloader_time'] = dataloader_time
timing_stats['model_inference_time'] = model_time
if args.only_llm:
results_dict['generated_wavs'] = [None] * len(results_dict['prompt_speech_tokens'])
for i in range(len(results_dict['generated_wavs'])):
future = executor.submit(
save_file_async, results_dict['generated_wavs'][i],
results_dict['prompt_speech_tokens'][i],
results_dict['generated_speech_tokens'][i],
batch['infos'][i].copy(), timing_stats.copy()
)
pending_futures.append(future)
completed_futures = []
for future in pending_futures:
if future.done():
try:
duration = future.result()
succeed_duration += duration
succeed_wavs += 1
except Exception as e:
failed_wavs += 1
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [ERROR] - rank {rank} of {world_size}: Error in async save task: {e}")
completed_futures.append(future)
for future in completed_futures:
pending_futures.remove(future)
if local_rank == 0:
update_n = world_size * len(batch["prompt_text_tokens_for_llm"])
if progress_bar.n + update_n > progress_bar.total:
progress_bar.update(progress_bar.total - progress_bar.n)
else:
progress_bar.update(update_n)
current_time = time.time()
if current_time - last_print_time >= 120 and not args.only_llm:
elapsed_time = current_time - start_time
avg_duration = succeed_duration / succeed_wavs if succeed_wavs > 0 else 0
estimated_total_duration = avg_duration * estimated_total_wavs
current_rtf = elapsed_time / estimated_total_duration if estimated_total_duration > 0.01 else 0
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - rank {rank} of {world_size}: Estimated total wavs: {estimated_total_wavs} ({estimated_total_wavs - succeed_wavs} pending to save), Succeed wavs: {succeed_wavs}, Failed wavs: {failed_wavs}, Estimated total duration: {estimated_total_duration:.2f}s ({estimated_total_duration / 3600:.2f} h), Estimated RTF: {current_rtf:.5f}, Elapsed time: {elapsed_time:.2f}s") # noqa
last_print_time = current_time
except StopIteration:
break
except Exception as e:
failed_wavs += 1
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [ERROR] - rank {rank} of {world_size}: Error in main loop: {e}")
continue
total_time = time.time() - start_time
if local_rank == 0:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - Waiting for {len(pending_futures)} pending save tasks to complete...")
for future in pending_futures:
try:
duration = future.result(timeout=60)
succeed_duration += duration
succeed_wavs += 1
except Exception as e:
failed_wavs += 1
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [ERROR] - rank {rank} of {world_size}: Error in final async save task: {e}")
executor.shutdown(wait=True)
if local_rank == 0:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - All async save tasks completed.")
progress_bar.close()
if not args.only_llm:
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
tqdm.write(f"[{timestamp}] - [INFO] - rank {rank} of {world_size}: Final Report - Succeed wavs: {succeed_wavs}, Failed wavs: {failed_wavs}, Total duration: {succeed_duration:.2f}s ({succeed_duration / 3600:.2f} h), RTF: {total_time / succeed_duration:.5f}") # noqa
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
main()
|